We support Open Science and aim to make all data and code associated with our published studies available online (click [DATA] or [CODE] links below each title). If you would like data or code not seen here please just ask. We have also created a user-friendly toolbox bringing together models and methods for analysing analogue report tasks.


Working memory resources can be efficiently deallocated from items that become obsolete
PsyArXiv  doi:10.31234/osf.io/dbv3h

2022 / in press

Role of time in binding features in visual working memory
Psychological Review  (in press)


Mechanisms of feature binding in visual working memory are stable over long delays
Journal of Vision  21(12): 7. doi:10.1167/jov.21.12.7 ()

Transsaccadic integration operates independently in different feature dimensions
Journal of Vision  Jul 6; 21(7): 7. doi:10.1167/jov.21.7.7 ()
Special Issue: “From Peripheral to Transsaccadic and Foveal Perception”

Limited memory for ensemble statistics in visual change detection
Cognition  214: 104763. doi:10.1016/j.cognition.2021.104763 ()

Transsaccadic integration relies on a limited memory resource
Journal of Vision  May 3; 21(5): 24. doi:10.1167/jov.21.5.24 ()
Special Issue: “From Peripheral to Transsaccadic and Foveal Perception”

Location-independent feature binding in visual working memory for sequentially presented objects
Attention, Perception & Psychophysics  83: 2377–2393. doi:10.3758/s13414-021-02245-w ()

Consequence of stroke for feature recall and binding in visual working memory
Neurobiology of Learning and Memory  2021 Jan 15: 107387. doi:10.1016/j.nlm.2021.107387 ()


Stochastic sampling provides a unifying account of working memory limits
Proceedings of the National Academy of Sciences  2020 Aug, 202004306. doi:10.1073/pnas.2004306117 ()

Theory of neural coding predicts an upper bound on estimates of memory variability
Psychological Review  127(5): 700–718. doi:10.1037/rev0000189 ()


The effect of frontoparietal paired associative stimulation on decision-making and working memory
Cortex  117: 266–276. doi:10.1016/j.cortex.2019.03.015 ()

Recall of facial expressions and simple orientations reveals competition for resources at multiple levels of the visual hierarchy
Journal of Vision  19(3): 8. doi:10.1167/19.3.8 ()

Independent working memory resources for egocentric and allocentric spatial information
PLOS Computational Biology  15(2): e1006563. doi:10.1371/journal.pcbi.1006563 ()

Flexible updating of dynamic knowledge structures
Scientific Reports  9(1): 2272. doi:10.1038/s41598-019-39468-9 ()

Functions of memory across saccadic eye movements REVIEW
Current Topics in Behavioral Neurosciences  41:155–183. doi:10.1007/7854_2018_66 ()


Internal but not external noise frees working memory resources
PLOS Computational Biology  14(10): e1006488. doi:10.1371/journal.pcbi.1006488 ()

The ipsilesional attention bias in right hemisphere stroke patients as revealed by a realistic visual search task: neuroanatomical correlates and functional relevance
Neuropsychology  32(7): 850–865. doi:10.1037/neu0000493 ()

New perspectives on binding in visual working memory REVIEW
British Journal of Psychology  110(2): 207–244. doi:10.1111/bjop.12345 ()

Efficient coding in visual working memory accounts for stimulus-specific variations in recall
Journal of Neuroscience  38(32): 7132–7142. doi:10.1523/JNEUROSCI.1018-18.2018 ()

Failure of self-consistency in the discrete resource model of visual working memory
Cognitive Psychology  105: 1–8. doi:10.1016/j.cogpsych.2018.05.002 ()

Drift in neural population activity causes working memory to deteriorate over time
Journal of Neuroscience  38(21): 4859–4869. doi:10.1523/JNEUROSCI.3440-17.2018 ()

Visual working memory is independent of the cortical spacing between memoranda
Journal of Neuroscience  38(12): 3116–3123. doi:10.1523/JNEUROSCI.2645-17.2017 ()

Reassessing the evidence for capacity limits in neural signals related to working memory
Cerebral Cortex  28(4): 1432–1438. doi:10.1093/cercor/bhx351 ()

A neural model of retrospective attention in visual working memory
Cognitive Psychology  100: 43–52. doi:10.1016/j.cogpsych.2017.12.001 ()


Restoration of fMRI decodability does not imply latent working memory states
Journal of Cognitive Neuroscience  29(12): 1977–1994. doi:10.1162/jocn_a_01180 ()

Automatic and intentional influences on saccade landing
Journal of Neurophysiology  118: 1105–1122. doi:10.1152/jn.00141.2017 ()

Neural architecture for feature binding in visual working memory
Journal of Neuroscience  37(14): 3913–3925. doi:10.1523/JNEUROSCI.3493-16.2017 ()

Fidelity of the representation of value in decision-making
PLOS Computational Biology  13(3): e1005405. doi:10.1371/journal.pcbi.1005405 ()

Reduced hippocampal functional connectivity during episodic memory retrieval in autism
Cerebral Cortex  27: 888–902. doi:10.1093/cercor/bhw417 ()


Distinct neural mechanisms underlie the success, precision, and vividness of episodic memory
eLife  5: e18260. doi:10.7554/eLife.18260 ()

A signature of neural coding at human perceptual limits
Journal of Vision  16(11): 4. doi:10.1167/16.11.4 ()

Competition between movement plans increases motor variability: evidence of a shared resource for movement planning
Journal of Neurophysiology  116(3): 1295–303. doi:10.1152/jn.00113.2016 ()

No fixed item limit in visuospatial working memory
Cortex  83: 181–193. doi:10.1016/j.cortex.2016.07.021 ()

Evaluating and excluding swap errors in analogue tests of working memory
Scientific Reports  6: 19203. doi:10.1038/srep19203 ()


Spikes not slots: noise in neural populations limits working memory REVIEW
Trends in Cognitive Sciences  19(8): 431–438. doi:10.1016/j.tics.2015.06.004 ()

Evidence for optimal integration of visual feature representations across saccades
Journal of Neuroscience  35(28): 10146–10153. doi:10.1523/JNEUROSCI.1040-15.2015 ()

A probabilistic palimpsest model of visual short-term memory
PLOS Computational Biology  11(1): e1004003. doi:10.1371/journal.pcbi.1004003 ()

Eye-Search: a web-based therapy that improves visual search in hemianopia
Annals of Clinical and Translational Neurology  2(1): 74–78. doi:10.1002/acn3.154 ()


Noise in neural populations accounts for errors in working memory
Journal of Neuroscience  34(10): 3632–3645. doi:10.1523/JNEUROSCI.3204-13.2014 ()

Changing concepts of working memory REVIEW
Nature Neuroscience  17(3): 347–356. doi:10.1038/nn.3655 ()

Working memory retrieval as a decision process
Journal of Vision  14(2): 2. doi:10.1167/14.2.2 ()

Functional magnetic resonance imaging of impaired sensory prediction in schizophrenia
JAMA Psychiatry  71(1): 28–35. doi:10.1001/jamapsychiatry.2013.2974 ()


Age-related decline of precision and binding in visual working memory
Psychology & Aging  28(3): 729–43. doi:10.1037/a0033236 ()

Dopamine reverses reward insensitivity in apathy following globus pallidus lesions
Cortex  49(5):1292–303. doi:10.1016/j.cortex.2012.04.013 ()

Rapid compensation of visual search strategy in patients with chronic visual field defects
Cortex  49(4):994–1000. doi:10.1016/j.cortex.2012.03.025 ()

Modulation of somatosensory processing by action
Neuroimage  70, 356–362. doi:10.1016/j.neuroimage.2012.12.043 ()

Obligatory encoding of task-irrelevant features depletes working memory resources
Journal of Vision  13(2):21, 1–13. doi:10.1167/13.2.21 ()


Rapid forgetting prevented by retrospective attention cues
Journal of Experimental Psychology: Human Perception & Performance  39(5): 1224–31. doi:10.1037/a0030947 ()

Active inhibition and memory promote exploration and search of natural scenes
Journal of Vision  12(8):8, 1–18. doi:10.1167/12.8.8 ()

Development of visual working memory precision in childhood
Developmental Science  15(4) 528–39. doi:10.1111/j.1467-7687.2012.01148.x ()

Impulsivity and rapid decision-making for reward
Frontiers in Psychology  3: 153. doi:10.3389/fpsyg.2012.00153 ()

Rapid decision-making under risk
Cognitive Neuroscience  3(1): 52–61. doi:10.1080/17588928.2011.613988 ()


Precision of working memory for visual motion sequences and transparent motion surfaces
Journal of Vision  11(14): 2, 1–18. doi:10.1167/11.14.2 ()

Temporal dynamics of encoding, storage and reallocation of visual working memory
Journal of Vision  11(10): 6, 1–5. doi:10.1167/11.10.6 ()

Dynamic updating of working memory resources for visual objects
Journal of Neuroscience  31(23): 8502–8511. doi:10.1523/JNEUROSCI.0208-11.2011 ()

Storage and binding of object features in visual working memory
Neuropsychologia  49: 1622–1631. doi:10.1016/j.neuropsychologia.2010.12.023 ()
Special Issue: “Interactions between attention and visual short-term memory (VSTM)”


Precision versus capacity of working memory in schizophrenic and healthy individuals
Archives of General Psychiatry Online  16 July ()

Integration of goal- and stimulus-related visual signals revealed by damage to human parietal cortex
Journal of Neuroscience  30(17): 5968–5978. doi:10.1523/JNEUROSCI.0997-10.2010 ()


The precision of visual working memory is set by allocation of a shared resource
Journal of Vision  9(10): 7, 1–11. doi:10.1167/9.10.7 ()

Response to comment on “Dynamic shifts of limited working memory resources in human vision”
Science  323: 877. doi:10.1126/science.1166794 ()


Dynamic shifts of limited working memory resources in human vision
Science  321: 851–854. doi:10.1126/science.1158023 ()

Eye movements as a probe of attention REVIEW
Progress in Brain Research  171: 403–411. doi:10.1016/S0079-6123(08)00659-6 ()


Spatial remapping of the visual world across saccades REVIEW
Neuroreport  18(12): 1207–1213. doi:10.1097/WNR.0b013e328244e6c3 ()

Computational principles of sensorimotor control that minimise uncertainty and variability REVIEW
Journal of Physiology  578(2): 387–396. doi:10.1113/jphysiol.2006.120121 ()

Predictive attenuation in the perception of touch
Attention & Performance XXII: Sensorimotor Foundations of Higher Cognition  Oxford University Press (Eds: P Haggard, Y Rosetti, M Kawato) ()

An improvement in perception of self-generated tactile stimuli following theta-burst stimulation of primary motor cortex
Neuropsychologia  45(12): 2712–2717. doi:10.1016/j.neuropsychologia.2007.04.008 ()

Simultaneous bimanual dynamics are learned without interference
Experimental Brain Research  183(1): 17–25. doi:10.1007/s00221-007-1016-y ()


Attenuation of self-generated tactile sensations is predictive, not postdictive
PLOS Biology  4(2): e28. doi:10.1371/journal.pbio.0040028 ()

Actions and consequences in bimanual interaction are represented in different coordinate systems
Journal of Neuroscience  26(26): 7121–7126. doi:10.1523/JNEUROSCI.0943-06.2006 ()

2005 & earlier

Evidence for sensory prediction deficits in schizophrenia
American Journal of Psychiatry  162: 2384–2386. doi:10.1176/appi.ajp.162.12.2384 ()

Perception of the consequences of self-action is temporally tuned and event driven
Current Biology  15: 1125–1128. doi:10.1016/j.cub.2005.05.023 ()

Interference between velocity- and position-dependent force-fields indicates that tasks depending on different kinematic parameters compete for motor working memory
Experimental Brain Research  163: 400–405. doi:10.1007/s00221-005-2299-5 ()

Failure to consolidate the consolidation theory of learning for sensorimotor adaptation tasks
Journal of Neuroscience  24(40): 8662–8671. doi:10.1523/JNEUROSCI.2214-04.2004 ()

Two eyes for an eye: The neuroscience of force escalation
Science  301: 187. doi:10.1126/science.1085327 ()