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Observers reproducing elementary visual features from memory after a short delay produce errors
consistent with the encoding-decoding properties of neural populations. While inspired by electrophys-
iological observations of sensory neurons in cortex, the population coding account of these errors is based
on a mathematical idealization of neural response functions that abstracts away most of the heterogeneity
and complexity of real neuronal populations. Here we examine a more physiologically grounded model
based on the tuning of a large set of neurons recorded in macaque V1 and show that key predictions of
the idealized model are preserved. Both models predict long-tailed distributions of error when memory
resources are taxed, as observed empirically in behavioral experiments and commonly approximated with
a mixture of normal and uniform error components. Specifically, for an idealized homogeneous neural
population, the width of the fitted normal distribution cannot exceed the average tuning width of the
component neurons, and this also holds to a good approximation for more biologically realistic
populations. Examining eight published studies of orientation recall, we find a consistent pattern of
results suggestive of a median tuning width of approximately 20°, which compares well with neuro-
physiological observations. The finding that estimates of variability obtained by the normal-plus-uniform
mixture method are bounded from above leads us to reevaluate previous studies that interpreted a
saturation in width of the normal component as evidence for fundamental limits on the precision of
perception, working memory, and long-term memory.

Keywords: visual working memory, short-term memory (STM), population coding, mixture models,
continuous report

The continuous report task (Prinzmetal, Amiri, Allen, &
Edwards, 1998; Wilken & Ma, 2004) provides a means of

measuring the fidelity with which visual information can be
retained in memory. The general procedure first presents ob-
servers with a set of stimuli differing in an elementary visual
feature, such as color hue or orientation, which they are re-
quired to remember during a short retention interval. At test, a
single target item is identified (e.g., with a cue at its previous
location), and observers must reproduce the corresponding
memorized feature value via an analogue response method (e.g.,
clicking on a color wheel). Internal noise ensures that there is
some degree of error in observers’ estimates of the target
feature, and across trials, the dispersion of these errors provides
a metric of memory precision. Numerous studies testing mem-
ory for a wide variety of stimulus features have shown that the
variability in recall errors (as measured by, for example, their
standard deviation) increases smoothly and continuously with
set size (the number of items in the memory array; Bays,
Catalao, & Husain, 2009; van den Berg, Awh, & Ma, 2014; van
den Berg, Shin, Chou, George, & Ma, 2012).

While the standard deviation of errors provides a concise sum-
mary of recall fidelity in a particular experimental condition,
attempts have been made to further distinguish different types of
error that might contribute to the pattern of responses. One popular
method, the normal-plus-uniform model (W. Zhang & Luck,
2008), statistically decomposes responses into two components,
with the intention of distinguishing responses based on memory
for the target item from random guesses. This method assumes that
responses resulting from memory of the target item will have a von
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Mises distribution (a circular analogue to the normal) centered on
the true feature value, whereas other responses will be uniformly
distributed in feature space. According to this model, it is the
standard deviation of just the fitted von Mises component of the
error distribution that measures the precision with which items are
stored, whereas the mixing proportion of the fitted von Mises and
uniform components reflects the probability of a tested item being
in memory at all.

A subsequent study (Bays et al., 2009) found that the uniform
component of the normal-plus-uniform fit captured many re-
sponses that were, in fact, distributed around the features of other,
nontarget items in the memory array and proposed adding a third
component to the model to capture these “swap errors.” The
relative proportion of swap errors may be estimated using either
parametric methods (Bays et al., 2009; van den Berg et al., 2014;
see also Rerko, Oberauer, & Lin, 2014) or nonparametric ap-
proaches (Bays, 2016a). These errors have proved an important
source of information for understanding how multiple features of
an object are linked or “bound” together in memory (Schneegans
& Bays, 2018). However, in this study, we focus primarily on
interpreting the von Mises component of the normal-plus-uniform
model, so for the present purposes, it is sufficient to say the other
component is uniformly distributed with respect to the target item.

Bays (2014) noted that working memory error distributions
corresponded very closely with those predicted by a simple
encoding-decoding model of working memory. This model is
based on the principles of population coding (Pouget, Dayan, &
Zemel, 2003, 2000) and assumes that visual feature information is
first encoded in the activation of feature-selective neurons and
subsequently reconstructed from the persisting (or reinstated) spik-
ing activity of the same cells. This study further found that the
effects of set size on recall error could be parsimoniously ex-
plained if the total activity of the neural population served as a
limited resource, shared out between memory items (i.e., if the
activity was normalized; see Bays, 2015 for neural evidence and
possible mechanisms). As a consequence, for larger memory ar-
rays, each item is represented with fewer spikes, so the model
predicts that item precision declines as set size increases. Formal
model comparison has shown that the neural model provides a
better account of recall errors than models based on a mixture of
remembered and guessing states (Bays, 2014; Taylor & Bays,
2018; van den Berg, Yoo, & Ma, 2017). The neural model also
quantitatively reproduces the effects of predictive (Bays, 2014)
and retrospective cues on recall (Bays & Taylor, 2018) and accu-
rately predicts both the frequency of swap errors and which non-
targets are likely to be reported in place of the target (Schneegans
& Bays, 2017).

While the population coding account has been very successful at
reproducing patterns of error, it is based on a mathematical ideal-
ization of neural response functions that abstracts away most of the
heterogeneity and complexity of real neuronal populations. There-
fore, we set out to examine whether a neural population that better
reflects the tuning characteristics of visual cortical neurons can
reproduce benchmark behavioral results. To anticipate our results,
we found that key predictions of the idealized model are indeed
preserved. In particular, physiologically derived populations also
predict long-tailed distributions of error at lower levels of popu-
lation activity, as observed empirically at higher set sizes and for
items with lower priority in memory.

We subsequently investigated the consequences of fitting the
normal-plus-uniform mixture model to recall distributions gener-
ated from each neural population. Irrespective of their theoretical
basis, the mixture parameters can be viewed as descriptive statis-
tics, concisely summarizing the patterns of response errors pre-
dicted by the population models. Our central finding was that the
estimated width of the normal mixture component (which mea-
sures the “central peak” in error distributions) cannot exceed the
average width of the tuning functions in the underlying neural
population. We show that results of previous recall experiments
support the existence of such an upper bound and that the bound is
broadly consistent with typical tuning widths recorded in electro-
physiological studies.

These results have several important implications. First, they
provide validation for the population coding model by confirming
a correspondence between behavioral recall performance and ob-
servable properties of the underlying neural system—while the
comparison is indirect at this stage, technical advances should
permit increasingly robust tests of this correspondence in future.
Second, they place an alternative, theory-based interpretation on
the parameters obtained from the normal-plus-uniform fit. Hun-
dreds of experimental studies have reported and interpreted their
results on the assumption that this fit accurately distinguishes
random guesses from memory-based responses. We show that
these previous results can be reinterpreted, rather than simply
discounted, in light of the population coding account, providing
valuable information about the working memory system and its
relation to perception and long-term memory. Finally, our numer-
ical simulations and the analytical results provided in the Appen-
dix provide some insight into how mechanisms built on
continuous-valued functions can produce behavior superficially
suggestive of dichotomous (all-or-nothing) states.

Method

Population Coding Model

Population coding provides a mechanistic description of how
visual inputs are registered by feature-selective neurons (Ma,
Beck, Latham, & Pouget, 2006; Pouget et al., 2000, 2003). The
principle is that a visual feature value—for example, the orienta-
tion of a contrast edge—evokes a pattern of noisy activity in a
population of neurons that imperfectly encodes that feature value.
As a model of memory, the assumption is that this activity can be
maintained, or restored after a delay, at which point the original
feature value can be decoded from the joint population activity.
The inherent variability in neural spiking (often equated with a
Poisson process) ensures that decoded values will be probabilisti-
cally distributed around the original stimulus value. The width and
shape of this error distribution is principally determined by two
parameters of the neural population: the summed activation (or
gain) of the population and the tuning specificity of the cells.

We conducted simulation studies to understand the conse-
quences of fitting the normal-plus-uniform model to the distribu-
tions of error predicted by population coding. We considered two
different types of neural population. Our first simulation was based
on an idealized population that has been used previously to fit
empirical response distributions and for which error distributions
can be obtained quite directly through mathematical analysis (for
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details, see Bays, 2016b). In our second study, we considered a
more biologically realistic population with tuning properties drawn
from real neurons, where due to the model’s complexity, error
distributions can only be obtained through numerical simulation.
We describe the details for each next.

Idealized neural population. In this population, neurons had
identical von Mises tuning functions evenly spaced throughout the
input feature dimension, with no baseline activity (see Figure 1a).
Additionally, each neuron’s spiking activity was independent of all
the other neurons’ activities. Formally, for M neurons, the firing
rate of the ith neuron with preferred value �i in response to a
stimulus value � was given by

ri(�) �
�
M

1
I0(�)exp (� cos(� � �i)), (1)

where � is the population gain, � is the tuning specificity, and I0(·)
is the modified Bessel function of the first kind with order zero.
Spikes were generated by a Poisson process, and decoded feature

values were obtained via maximum likelihood (for full details, see
Bays, 2014).

The gain parameter, �, controls how responsive the popula-
tion is to visual stimulation and determines how many spikes
are available for decoding feature values. As the population
gain increases, the model can encode visual information more
reliably, which typically produces smaller errors between the
decoded and veridical feature values. The tuning specificity
parameter, �, defines the set of input values that elicit a re-
sponse from each neuron in the population. Broadly tuned
neurons (small �) respond to a wider range of input values,
whereas narrower functions (large �) have a more selective
response. Bays (2016b) previously showed that, for large M,
error distributions can be approximated by a von Mises random
walk, where the number of steps is determined by the total spike
count observed during the decoding window. Conveniently, this
permits the error probability density function, fneural(�; �, �), to

Figure 1. Overview of models and methods (a & b). Examples of tuning functions in an idealized
homogeneous neural population (a) and in a heterogeneous population based on electrophysiological
recordings from macaque V1 (b). For each population, the tuning function of one example neuron is
highlighted (c & d). Predicted distributions of error in decoding an abstract feature value from activity of
the idealized (c) or biological (d) population. Different colors correspond to different amplitudes of
population activity, with higher mean activity levels in the biological population chosen to roughly equate
error variability with the idealized model. For this illustration the idealized population had tuning width
(� � 2, �49° [360°]). The median tuning width in the biological population was �̃ � 2.2, �46° [360°]. (e)
Example distributions of errors made by a single illustrative participant in an orientation reproduction task
(Study 3 in Table 1) at three different set sizes (N, colors). (f) Approximation of a model-predicted error
distribution (green; biological population with �� � 40) with a normal-plus-uniform mixture (black). See the
online article for the color version of this figure.
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be straightforwardly obtained for any values of the model
parameters (see Bays, 2016b for derivations; code available at
www.bayslab.com/code/JN14/).

We generated predicted error density functions by parametri-
cally altering the tuning and gain parameters. A parameter grid was
instantiated that contained four � values (2, 4, 8, 16) and 40 �
values, logarithmically spaced between 10–1.5 and 102. For each
parameter combination, we estimated normal-plus-uniform model
parameters by minimizing the sum of squared errors (SSE) be-
tween the neural error distribution and the mixture model error
distribution (see Equation 6), evaluated at 103 evenly spaced points
on the circle:

SSE � �
i

(fmixture(�i; 	, 
) � fneural(�i; �j, �k))
2. (2)

Biological neural population. Here we describe simulations
of a neural population based on real tuning characteristics ob-
served in visual cortex. We focused on the properties of
orientation-selective neurons in area V1 (primary visual cortex) as
a canonical example of population coding. To our knowledge, no
study in humans has mapped out individual orientation tuning
functions of V1 neurons. However, a study in nonhuman primates
conducted by Ecker et al. (2010) provides suitable data, based on
electrophysiological recordings of 408 neurons in primary visual
cortices of two macaques viewing oriented sine wave gratings. Tun-
ing characteristics of each recorded neuron, including baseline activ-
ity, amplitude, and tuning specificity, were publicly released along-
side code from (Ecker, Berens, Tolias, & Bethge, 2011; downloaded
from http://bethgelab.org/code/ecker2011/). This data provided the
basis for our simulations of heterogeneous population coding.

In the heterogeneous neural population, every component neu-
ron possessed an individually parameterized tuning function (see
Figure 1b for examples). Given a specific input value, �, the mean
response of the ith of M neurons was described using the following
general expression for a von Mises tuning function with baseline
activity,

r�i(�) � 	i � �iexp (�i(cos (� � �i) � 1)), (3)

where 	i is the neuron’s baseline activation level, �i its amplitude,
and �i its tuning specificity. We generated heterogeneous popula-
tions by drawing tuning parameters randomly with replacement
from the pool of neurons characterized by Ecker et al. (2010). As
the summary dataset made available by these authors did not
include preferred orientation values, �i, these were randomly
drawn from a uniform distribution on the circle. The randomly
drawn tuning functions were then scaled to produce a median
tuning specificity of �̃ and an expected population gain of �� .

We further introduced short-range pairwise correlations be-
tween neurons. We modeled correlation in the activity between the
ith and jth neuron as an increasing function of the similarity
between the neurons’ preferred input values (as in Sompolinsky,
Yoon, Kang, & Shamir, 2001):

cij � c0 exp(� | �i � �j | ). (4)

Small positive neural correlations are found throughout cortex,
though estimates of their magnitude vary considerably; for in-
stance, estimates of correlations between neurons in V1 range from
0.01 to 0.26 (Cohen & Kohn, 2011). For our simulations, we fixed

c0 at 0.2, choosing a value at the upper end of existing estimates in
order to more clearly observe any consequences of correlations for
the decoded error distributions.

We instantiated a parameter grid that contained four values of
the median tuning specificity, �̃, �2, 4, 8, 16�, and 20 population
gain �� values logarithmically spaced between 10–2 and 103. The
predicted error density functions cannot be obtained via the
method described by Bays (2016b), so they must instead be ap-
proximated via Monte Carlo simulation. Furthermore, simulating
correlated Poisson processes is computationally very demanding
(e.g., Macke, Berens, Ecker, Tolias, & Bethge, 2009), so we used
a Gaussian approximation to Poisson, as in, for example, Schnee-
gans and Bays (2017). Specifically, samples of population activity,
r(�), were generated as draws from a multivariate normal distri-
bution NM��, ��, with mean equal to the neurons’ mean firing
rates, 
i � r�i���, and covariance, �ij � cij�� ⁄ M, with the result that
the variance in total population activity scaled with the mean as for
Poisson noise.

For each parameter combination ��̃, �� �, we generated 106 sam-
ples of activity from each of 192 randomly drawn heterogeneous
populations each comprising 1,000 neurons, using the Cholesky
decomposition method for generating correlated random variables.
Each sample was based on a different stimulus value chosen
randomly from a uniform distribution on the circle. Estimation of
the encoded stimulus was based on maximum likelihood (ML)
decoding of the joint population activity, where we assumed that
the decoder was not aware of the correlations in the population.
Specifically, we numerically maximized the log likelihood for
uncorrelated activity,

�̂ML � arg max
��

�
i

M

rir�i(��) � 1
2�i

M

r�i(��)2 (5)

based on discretizing the circular stimulus space into 100 equally
spaced bins. We then computed a histogram probability density
estimate of the error in the ML estimate, based on the same bins,
and collapsing over all samples and simulated populations. Finally,
we fit the normal-plus-uniform model to the histogram estimate, as
described earlier for the idealized population.

Normal-Plus-Uniform Model

The normal-plus-uniform model of recall errors (W. Zhang &
Luck, 2008) specifies a probabilistic mixture of two distributions:
one von Mises centered on the true value of the stimulus to be
recalled and one uniformly distributed across all possible feature
values. The probability density function is

fmixture(�; 	, 
) � 	 · VM(�; 0, 
) � 1 � 	
2�

(6)

where � � �̂ � � denotes the angular deviation between the target,
�, and reported feature value, �̂, on the circle; VM(�; 0, 
) denotes
the probability density function of a zero-centered von Mises
distribution with circular standard deviation 
, evaluated at �; and
	 is the mixing parameter determining the proportion of errors
drawn from the von Mises distribution. Both 	 and 
 are free
parameters that must be estimated from data.
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Experimental Data

We fit both the idealized population coding model and the
normal-plus-uniform model to seven existing orientation reproduc-
tion datasets, all either already in the public domain or sourced
from our own lab. Some methodological details varied between
studies (e.g., whether masking was used, presentation time, reten-
tion interval, etc.), but the general experimental protocol remained
the same: participants studied arrays containing a variable number
of oriented stimuli and were subsequently required to reproduce
the orientation of a randomly selected target using an analogue
response device. Study details are laid out in Table 1 (Note that
Study 1 manipulated presentation duration in order to assess the
temporal dynamics of feature encoding; the model fits presented
here were obtained by collapsing across durations. For all further
details, the reader is referred to the Method section of the original
studies).

For the idealized population coding model, parameters were
estimated separately for each participant, with the assumption that
gain decreases in inverse proportion to set size (� � 1/N—i.e.,
equal allocation of neural resource as in Bays, 2014; code for
fitting the idealized population coding model is available at www
.bayslab.com/code/JN14/). For the normal-plus-uniform model,
parameters were estimated separately for each participant and set
size (code available at www.bayslab.com/code/JV10/). To gener-
ate the curve in Figure 4, we fit the participant-averaged von Mises
standard deviation parameters from the normal-plus-uniform fit,
pooled across experiments, with an exponential saturation func-
tion:

y � 	 � �(1 � exp (��x)). (7)

The asymptote of the curve was calculated as 	 � �.
Note that there is possibility for confusion when dealing with

orientation data because the range of possible orientations spans
180°, yet this space has the topology of a circle, and circular
statistics are naturally conducted on an interval spanning 360°. In
this article, we report orientation values in degrees of the original
orientation space, which for clarity we write, for example, 10°
[180°]. In contrast, when reporting nonorientation results, we do so
in degrees on the circle, writing, for example, 10° [360°].

We further examined parameters of the normal-plus-uniform
model obtained in four previous studies, all of which tested mem-
ory for color. Data from W. Zhang and Luck (2008) is already in
the public domain, so we estimated model parameters in the same
way as for the orientation experiments. For the remaining studies,
individual trial data was not available, so we reproduce here the

model parameters reported in the text and/or figures of each article
(Asplund, Fougnie, Zughni, Martin, & Marois, 2014; Brady,
Konkle, Gill, Oliva, & Alvarez, 2013; W. Zhang & Luck, 2009).

Results

We first simulated the reconstruction of an abstract circular
stimulus value from activity of one of two classes of neural
population. In an idealized population (illustrated in Figure 1a),
every neuron’s tuning is described by an identical von Mises
function, with neurons differing only in their preferred feature
values (the peaks of the tuning functions), which span the feature
space with uniform density. Figure 1c shows how the distribution
of error in decoding a feature value stored in this idealized neural
population (Figure 1a) changes with the mean activity level in the
population (gain, �). As reported in previous work (e.g., Bays,
2014), the error distributions deviate from normality, with this
discrepancy becoming particularly salient at lower activity levels
(e.g., blue curve in Figure 1a) where the error distributions grow
increasingly long tailed.

Figure 1b illustrates tuning of a sample of real orientation-
selective neurons recorded in macaque V1 by Ecker et al. (2010).
While the tuning of each neuron was again approximated by a von
Mises function, neurons differed greatly in their tuning width and
amplitude, as well as their level of baseline activity. For the
purposes of simulation, we generated “biological” populations by
randomly sampling tuning parameters from this dataset. Based on
results from other electrophysiological studies, we further intro-
duced correlated noise into the neurons’ activity (see Method for
full details). Figure 1d shows the error distributions generated by
decoding of feature values from a biological population. With
appropriate choice of mean activity (�� ; higher than in the idealized
model), we observed considerable qualitative similarity between
these predictions and those of the idealized model. In particular,
the presence of long tails at lower activity levels was preserved.

Figure 1e plots distributions of errors made by a representative
participant in a typical continuous report experiment, testing recall
of one orientation from a display of N oriented stimuli. At larger
set sizes, the long tails evident in both simulated datasets are
visible here too. This aspect of recall errors has often been inter-
preted with respect to fitted parameters of a normal-plus-uniform
mixture model. While the psychological interpretation of the mix-
ture model components is debated, the parameters (the von Mises
standard deviation and mixing proportion) can be viewed as de-
scriptive or summary statistics capturing key aspects of the error
distributions. Figure 1f shows how a mixture of normal and uni-

Table 1
Methodological Details of the Orientation Recall Datasets Supporting the Normal-Plus-Uniform Model Fits Displayed in Figure 2

No. Study Stimulus Set sizes Participants Trials

1 Bays, Gorgoraptis, Wee, Marshall, & Husain (2011) Bar 1, 2, 4, 6 32 200
2 Bays, Wu, and Husain (2011) Bar 1, 6 10 50, 250
3 Gorgoraptis, Catalao, Bays, and Husain (2011), Exp 2 Bar 1–5 8 100
4 van den Berg, Shin, Chou, George, and Ma (2012) Gabor 1–8 6 320
5 Rademaker, Tredway, and Tong (2012) Gabor 3, 6 6 800
6 Bays (2014) Bar 1, 2, 4, 8 8 225
7 Pratte, Park, Rademaker, and Tong (2017) Gabor 1, 2, 3, 6 12 640

Note. The Trials column denotes the number of trials each participant completed per set size.
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form error components (black line) approximates an error distri-
bution obtained by simulation of a biological neural population. In
the next section, we take advantage of this method to quantitatively
compare the predictions of the two neural models.

Comparing Simulations of Idealized and
Biological Populations

Figure 2 shows results of fitting the normal-plus-uniform model
to the error distributions derived from each neural population.
Considering first the standard deviation of the fitted von Mises
(i.e., normal) component, for an idealized population of neurons
(Figure 2a), we observed that, as the total activity in the population

decreased (moving from left to right on the x-axis), the von Mises
standard deviation initially increased rapidly but then saturated,
approaching an asymptotic upper bound. The asymptotic value
coincided exactly with the standard deviation of the neural tuning
functions, indicated by the dotted lines (different colored lines
correspond to populations with different tuning widths).

For a homogeneous population of neurons without baseline
activity, this asymptotic behavior is expected, and we have in-
cluded a mathematical explanation of this result in the Appendix.
A simple intuition is that a single spike generated by a tuned
neuron narrows down the possible values of the input stimulus to
a range equal to the width of its tuning function. In the limit, as the

Figure 2. Results of fitting the normal-plus-uniform model to errors resulting from population coding (a & b).
Parameter values for the standard deviation of the von Mises component obtained by fitting the normal-plus-
uniform model to errors generated from the idealized population (a) and biological population (b). Population
gain is plotted on a log axis, decreasing from left to right. Solid lines show fitted parameter values for different
neural tuning widths (colors; larger � values correspond to narrower tuning functions; for the biological
population, �̃ indicates the median tuning width). Dashed lines indicate the standard deviation corresponding to
each tuning width. Shaded areas in Panel d indicate plus or minus one standard deviation of parameter estimates
across simulation repetitions. Note that for both idealized and biological populations, as gain decreases, the von
Mises standard deviation parameter approaches an upper bound corresponding (approximately in the biological
case) to the average tuning width in the population (c & d). Parameter values for the mixing proportion of the
von Mises component of the normal-plus-uniform fit. Note that, while the standard deviation parameter saturates
at its upper bound, the mixing proportion continues to fall toward zero as gain decreases. See the online article
for the color version of this figure.
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gain of the population approaches zero, each decoded value will be
based on either one spike or none. With one spike, the optimal
estimate is simply the preferred value of the neuron that generated
the spike; for zero spikes, all stimulus values are equally probable.
Thus, assuming approximately von Mises tuning, the distribution
of error approaches a mixture of a von Mises centered on the
stimulus value with width equal to the underlying tuning width,
corresponding to the one-spike state, and a uniform distribution
corresponding to the zero-spike state.

Figure 2b shows corresponding results for the population based
on V1 electrophysiology. Despite the heterogeneity in tuning and
correlations in activity, the pattern of changes to model parameters
is remarkably similar to the idealized population. The von Mises
standard deviation is again found to saturate as the population
activity decreases, with the upper bound approximating the median
of the tuning widths in the population (dotted lines), although with
some undershoot for broader tuning (e.g., black curve).

Mathematical analysis of these more biologically realistic pop-
ulation codes is not trivial, but we have set out some arguments in
the Appendix as to why the limiting behavior of the model at low
gains should not be strongly altered by the presence of tuning
heterogeneity or noise correlations. One caveat is that these argu-
ments address only the asymptotic predictions at infinitesimally
small activity levels (i.e., the “endpoints” the curves are approach-
ing at the far right of each plot). Thus, they provide only a partial
explanation of the overall strong similarity between the functions
plotted in the left- and right-hand panels of Figure 2.

Considering next the mixing parameter, which determines the
von Mises proportion in the normal-plus-uniform fit, we observed
a monotonic decline with decreasing activity (left to right in
Figures 2c & d) for both idealized and biological populations. This
parameter depends less on the tuning widths (different colored
lines), although there is some influence for middling levels of gain,
particularly in the biological population. In the conventional inter-
pretation, a decrease in this mixing parameter is interpreted as an
increase in the frequency of random or guessing responses. The
zero-spike state for the idealized population can be considered a
guessing state, although the von Mises proportion of the normal-
plus-uniform fit only approximately tracks the probability of zero
spikes in the model. However, this possibility of obtaining no
information about the stimulus is a unique consequence of the
artificial homogeneity imposed on the idealized population. Even
the smallest deviation from uniformity in the density of tuning
functions over the stimulus space will make zero spikes a more
probable outcome for some stimulus values than others, with the
consequence that even a zero-spike state would convey some
information about the stimulus. In fact, for reasons of computa-
tional efficiency, the heterogeneous simulations modeled variation
in neural activity with a continuous multivariate Gaussian distri-
bution, rather than a discrete Poisson distribution, demonstrating
that these results do not actually depend on the discrete nature of
spiking. The normal-plus-uniform fit nonetheless ascribes a large
proportion of responses to the uniform (“guessing”) component,
particularly at low gains (Figure 2d).

The results of our simulation studies imply that the normal-plus-
uniform model parameters can be reinterpreted from a physiolog-
ical perspective. We observed that changing the summed activa-
tion of the underlying population induces a continuous change in
both parameters, but importantly, the amplitudes of the change in

each parameter are asymmetric. In particular, at the lower end of
the gain spectrum, decreases in activity drive the mixing propor-
tion toward zero, while the standard deviation parameter saturates
toward an upper bound determined by the tuning widths of the
component neurons encoding the stimulus. We next examine
whether these predictions made by the population coding model
can be empirically corroborated.

Comparing Model Predictions to Orientation
Recall Data

Our simulations indicate that, for errors generated by decoding
feature information from a noisy population of tuned neurons, fits
of the normal-plus-uniform model will be bounded such that the
von Mises standard deviation parameter cannot exceed the average
standard deviation of the underlying neural tuning curves even as
the precision of the decoded estimates falls to zero. Previous work
(Bays, 2014; Taylor & Bays, 2018) has shown that, for multi-item
working memory tasks, setting the gain inversely proportional to
the number of items in a display provides a good fit of the
population coding model to empirical error distributions. On this
basis, we should expect the standard deviation parameter of a
normal-plus-uniform fit to recall data to increase toward an as-
ymptotic value as the number of items increases. Based on the
simulations, we also predict a monotonic decrease in the von Mises
mixing parameter with increasing set size.

Figure 3 presents normal-plus-uniform parameter estimates ob-
tained from seven previous studies testing recall of orientation
stimuli with varying set size. Although there is some variation
between experiments, the majority display a common pattern
whereby the standard deviation of the fitted von Mises component
increases with set size and begins to saturate (asymptote) when the
number of items is large (Figure 3, top). No set size in any study
produced a mean von Mises standard deviation parameter greater
than 20° (out of a 180° space of orientations). This effect on
standard deviation is paired with a continuous decline in the von
Mises mixing parameter with set size (Figure 3, bottom).

To better assess the asymptotic bound on the von Mises standard
deviation in these studies, we collapsed the data across experi-
ments at the participant level. Figure 4a plots the results for the von
Mises standard deviation parameter. The number of participants
per set size depends on which conditions were included in each
study and is, therefore, unbalanced; this information is summa-
rized by the relative size of each data point in the plot. With the
exception of a single set size (seven items) for which minimal data
was available, the mean effect of set size on von Mises standard
deviation was very accurately fit by a saturating function (red
curve; e.g., Albrecht & Hamilton, 1982; Bays, 2018b) with an
asymptote at 18.3° [180°] (dashed red line). Results of collapsing
the estimated mixture proportion across studies are shown in
Figure 4b.

These patterns are consistent with the population coding account
(Bays, 2014): if the total activity is normalized, larger set sizes will
reduce the amplitude of the neural signal on which individual
estimates of feature values are based, which in turn results in larger
recall errors. This increase in variability is reflected in comple-
mentary shifts in both mixture model parameters; lower activity
causes the standard deviation of the fitted von Mises component to
increase but also reduces the proportion of responses captured by
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that component. The approach of the standard deviation parameter
toward an upper bound means that further decreases in gain—for
example, due to testing with an even larger set size—will be
reflected primarily in changes to the von Mises proportion. In the
next section, we evaluate the prediction that the asymptotic bound
corresponds with physiological measures of orientation tuning.

Comparison With Neurophysiology

These results are strongly consistent with our predictions based
on simulations of the population coding model and, in particular,
suggest that, for orientation recall, there is an asymptotic upper
limit on the normal-plus-uniform standard deviation parameter at
roughly 20° [180°]. If our account is correct, this value is indica-

tive of the average tuning width of the neural populations under-
lying orientation recall in human participants. Fitting the idealized
population coding model directly to the orientation recall data
corroborated this estimate, resulting in a median tuning standard
deviation of 23.2° [180°].

Figure 4c plots the distribution of tuning widths obtained from
the 408 neurons recorded in macaque primary visual cortex by
Ecker et al. (2010). While there is considerable variation in tuning
across cells, the median tuning standard deviation of 23.0° [180°]
(blue vertical line) corresponds well with both the asymptote
obtained from the normal-plus-uniform fit to behavioral data (red
vertical line) and the estimate obtained from fitting the idealized
model (green vertical line). This result is further corroborated by

Figure 3. Normal-plus-uniform model parameters estimated from eight orientation recall datasets. The top
panel shows the participant-averaged von Mises standard deviation parameter obtained across different exper-
iments (colors) and set sizes (numbered). The bottom panel displays the corresponding values of the von Mises
mixing parameter. Error bars indicate plus or minus one standard error across participants. See the online article
for the color version of this figure.

707AN UPPER BOUND ON ESTIMATES OF MEMORY VARIABILITY



an older electrophysiological study by De Valois, Yund, and
Hepler (1982) that reported a median orientation full-width at
half-maximum of 40°, based on 387 neurons also recorded in
macaque V1, corresponding to a standard deviation of 18.7°
[180°].

Re-Evaluating Previous Results of the
Normal-Plus-Uniform Method

The evidence described for a ceiling on attainable values of the
normal-plus-uniform standard deviation parameter suggests the
need for a reevaluation of previous results obtained with this
method. Figure 5 displays fitted parameters from four previous
studies that applied the normal-plus-uniform method to data ob-
tained under varying conditions with the intention of addressing
several distinct research questions. These studies all tested recall of
colors chosen from a color wheel (defined as a circle in CIE LAB
color space). The dashed black line in Figure 5 (top) corresponds
to the average of the maximum standard deviation values obtained
in each study (although there is neurophysiological evidence for
color tuning in visual cortex, e.g., Conway & Tsao, 2009; Sanada,
Namima, & Komatsu, 2016, the limited availability of single-
neuron data for color tuning widths, and difficulty mapping be-
tween color spaces, means we do not have a prediction for this
bound). The results suggest an upper limit at approximately 22°
[360°]. Note that caution is needed in interpreting the apparent
similarity between this value and the one obtained for orientation
recall data; the range of orientations covers 180°, whereas the color
wheel covers 360°, so as a fraction of the parameter space, orien-
tation recall is approximately twice as variable as color recall.

Color reproduction. Results from W. Zhang and Luck (2008)
are shown in black in Figure 5 (far left). This was the first working

memory study to fit data with the normal-plus-uniform method,
and the sharp plateau in the von Mises standard deviation param-
eter at three items was presented as evidence for an upper limit on
the number of items that can be stored in visual working memory.
Specifically, assuming that the value of this parameter was a
measure of precision for items stored in memory, the authors
argued that for small set sizes, multiple independent copies of a
single item could be stored in the brain and averaged at recall to
enhance memory precision. This “slots-plus-averaging” model
predicts that the standard deviation parameter will increase with
set size (as the number of copies per item decreases) but will
abruptly reach a ceiling at the maximum number of items that can
be encoded—that is, the putative capacity limit—beyond which
point each item is represented once or not at all.

The sharp plateau at three items observed by W. Zhang and
Luck (2008) has not been widely replicated (e.g., see results of
orientation studies in Figure 3; also color results from Bays et al.,
2009), but the fact that the von Mises standard deviation parameter
does not increase indefinitely with number of items is a consistent
observation across studies. However, our modeling results point to
a new interpretation of this finding: rather than a limit on how
many items can be stored, the asymptotic upper bound on the
standard deviation parameter corresponds to, and is a consequence
of, the tuning specificity of the neural populations underlying color
recall. According to this interpretation, memory representations
continue to increase in variability at higher set sizes, but the
normal-plus-uniform fit captures this increasing variance primarily
with decreases in the von Mises mixing parameter (Figure 5,
bottom) rather than further increases in the von Mises standard
deviation parameter. Consistent with this interpretation, previous
studies that directly fit the population coding model to trial-by-trial

Figure 4. Parameter estimates from combined orientation data. (a) Participant-averaged von Mises standard
deviation parameter as a function of set size, collapsed across studies. The solid red curve indicates the best
fitting saturation function, which has an asymptotic maximum at the level shown by the red dashed line. Size
(area) of each data point corresponds to the relative number of participants contributing to it; larger points
indicate more data. Error bars indicate plus or minus one standard error across pooled participants. (b)
Participant-averaged von Mises mixing proportions, collapsed across studies. (c) Bars show the distribution of
tuning widths (standard deviation) recorded from orientation-selective neurons in macaque V1 by Ecker et al.
(2010); blue vertical line indicates the median of the recorded widths. Red vertical line indicates the asymptotic
limit of the von Mises standard deviation parameter shown in (a) green vertical line indicates the median tuning
width obtained by fitting the idealized population model to the same behavioral data. See the online article for
the color version of this figure.
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responses have found it to provide a consistently better fit than the
“slots-plus-averaging” model (Bays, 2014; Taylor & Bays, 2018).

Color reproduction with variable retention intervals. A
follow-up study (W. Zhang & Luck, 2009) held set size constant at
three items but varied the retention interval between 1 and 10 s.
Results obtained from the normal-plus-uniform method are shown
as red points in Figure 5 (center left). The observation of a
decrease in the von Mises mixing proportion at the longest delays,
coupled with relatively small increases in the von Mises standard
deviation parameter with delay, were interpreted as evidence for
“sudden death”; rather than becoming gradually less precise over
time, it was proposed that items spontaneously disappear from
memory. The present results again suggest an alternative interpre-
tation: with a set size of three, the standard deviation parameter of
the normal-plus-uniform fit was already close to its asymptotic
limit with a 1-s delay (compare with the highest set sizes in data
from W. Zhang & Luck, 2008; black points). Further increases in
variability at longer delays were, therefore, captured primarily by
decreases in the mixing parameter rather than increases in the
standard deviation parameter, as predicted by the population cod-
ing model.

In the study of W. Zhang and Luck (2009), small increases in
the standard deviation parameter with delay were observed but did

not attain statistical significance. Proposing that this could be a
consequence of insufficient statistical power, a recent empirical
study (Rademaker, Park, Sack, & Tong, 2018) revisited their
design but asked participants to hold just one item in memory over
variable delays. Their observation of a reliable increase in the
standard deviation parameter as delay increased is predicted by our
model; the drop in set size to one item shifts the standard deviation
parameter away from its upper bound into a regime where changes
in precision are reflected in both parameters of the mixture model.
More generally, it is important to emphasize that the population
coding model does not predict a “plateau” of the standard devia-
tion parameter as a result of any of the manipulations considered
in this article, where we take this term to mean a discontinuity in
the first derivative of a function such that its rate of rise abruptly
falls to zero. Instead, the standard deviation parameter is predicted
to “saturate” as population gain decreases— that is, progressively
approach an asymptotic upper bound that would be attained only if
activity fell precisely to zero (at which point the von Mises
contribution to errors would be zero). As a consequence, it should
always be possible to detect changes in the standard deviation
parameter in an experiment with sufficient statistical power. Note
that the same consideration applies to the von Mises mixing

Figure 5. Mixture model parameters obtained in four previous studies using colored stimuli. The top panel
shows the participant-averaged standard deviation of the von Mises component for different experimental
conditions within each study. The dashed line corresponds to the average of the maximum von Mises standard
deviation in each study. The bottom panel displays the corresponding participant-averaged von Mises mixture
proportions. Note that there is one data point (mixing parameter for set size 1) that was not available from the
original article. Error bars indicate plus or minus one standard error across participants with the exception of
Zhang and Luck (2009), where they indicate within-participant 95% confidence intervals (as in the original
article). See the online article for the color version of this figure.
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proportion, which saturates to unity at high levels of population
activity.

Long-term memory. The green data points in Figure 5
(center right) plot results from a study comparing working
memory fidelity to perceptual and long-term memory (Brady et
al., 2013). The authors interpreted the apparent upper limit on
von Mises standard deviation as evidence that items stored in
long-term memory share the same fidelity as items held in
visual working memory; specifically, this was based on the
similarity in this parameter between their long-term memory
task and the largest set size (five) in their working memory task.
It should be noted that the von Mises mixing parameter drops
markedly between the two tasks (Figure 5, bottom), which
would conventionally be interpreted as indicating many more
retrieval failures in the long-term memory task. In light of our
present results, however, this pattern in the mixture model
parameters has a simpler interpretation: variability in both cases
is sufficient to bring the von Mises standard deviation close to
its upper bound. This suggests that retrieving a single item from
long-term memory into working memory provides only a weak
signal—weaker even than the signal from a working memory
display with five items. Because five items is already sufficient
to bring the von Mises standard deviation close to the upper
bound determined by neural tuning, this further decrease in
signal strength in the long-term memory task is primarily re-
flected in the von Mises mixture proportion rather than the
standard deviation parameter.

A recent conceptual replication of the Brady et al. (2013)
study, using a larger number of participants and a Bayesian
analysis, found evidence for a larger von Mises standard devi-
ation in recall from long-term memory than on a three-item
working memory task (Biderman, Luria, Teodorescu, Hajaj, &
Goshen-Gottstein, 2018). Like the Rademaker et al. study, this
finding is consistent with the predictions of our model. A larger
sample size, coupled with a lower set size, means more statis-
tical power to detect small deviations of the standard deviation
parameter from its asymptotic maximum.

Attentional blink. Finally, we examined the results of a
study by Asplund et al. (2014) using a variation on the classic
“attentional blink” task (Shapiro, Raymond, & Arnell, 1997). In
this study, participants were presented with a series of colored
circles in rapid sequence. Embedded within each stream were
two square stimuli, and participants had to report the color of
each. The data shown as blue points in Figure 5 (far right) is for
a normal-plus-uniform fit to errors in recall of the second target,
as a function of the lag between targets (1, 2, 4, or 8 serial
positions). Based on these parameters, the authors concluded
that conscious awareness of a target item arises in an all-or-
none fashion because the interfering effect of the first target on
the second was observed as changes in the von Mises mixing
proportion, but not the von Mises standard deviation parameter.
Again, however, we can see that the von Mises standard devi-
ation, even at the longest lags where interference should be
negligible, is close to the upper bound (dashed line) inferred
from comparison across studies.1 As a result, the observation
that the mixing parameter is most strongly affected by lag
means only that signal strength is attenuated for the second
target when its presentation overlaps with processing of the first
and is not evidence for all-or-none storage.

Discussion

Thanks to its intuitiveness and ease of implementation, the
normal-plus-uniform method has become a common tool for an-
alyzing continuous report data. Indeed, the ability to extract from
response errors two parameters related to performance—instead of
a single measure of dispersion—can seem like a way of getting
“something-for-nothing” from an experimental dataset. The inter-
pretation of these parameters as products of separable psycholog-
ical processes determining the quality and quantity of representa-
tion has led researchers to make claims of “discreteness” not only
for working memory (W. Zhang & Luck, 2008) but also iconic
(sensory) memory (Pratte, 2018) and even conscious visual per-
ception (Asplund et al., 2014; Thibault, van den Berg, Cavanagh,
& Sergent, 2016).

Yet the standard interpretation placed on normal-plus-uniform
parameters can in some cases produce surprising, even incompat-
ible, conclusions. Consider the “bilateral field advantage,” the
observation that memory is improved for visual items that are
distributed across both the left and right visual fields, compared to
within a single hemifield (Delvenne, 2005). Using the normal-
plus-uniform model, Umemoto, Drew, Ester, and Awh (2010)
concluded that this bilateral advantage is due to an increase in the
number, but not the precision, of stored items. However, with
minor modifications to the timing and number of items, Y. Zhang
et al. (2017) subsequently found that the advantage manifested as
a change in precision, with no effect on storage probability.

Another example has arisen in the application of the normal-
plus-uniform method to investigation of mental disorders. Based
on a color report task, Gold et al. (2010) concluded that, though
patients with schizophrenia stored items just as precisely as
healthy controls, they tended to store fewer items in memory at one
time. In comparison, Xie et al. (2018), using the same task,
reported instead that individuals with self-reported schizotypy
remembered items less precisely and did not differ in how many
items were remembered. The fact that small changes in experi-
mental design, or testing a different population drawn from the
same diagnostic spectrum, can lead to such conflicting conclusions
is troubling for the psychological model. However, when the
representation of visual items in neural activity is taken into
consideration, these findings become much less surprising because
we have shown that both components of the normal-plus-uniform
model are influenced by changes in the same underlying parameter—
that is, the amplitude of the neural signal encoding the information.

Recently, Bays and Taylor (2018) set out to resolve similarly
conflicting results from studies of retrospective cuing. It is well-
established that recall performance for an item can be enhanced by
directing attention to its representation in memory, even after the

1 The supplementary materials of Asplund et al. (2014) report an addi-
tional control experiment using a reduced rate of stimulus presentation. The
mean von Mises standard deviation parameter of �16° is lower than in the
main experiment, making this potentially a better test for a disruptive effect
of the first target on this parameter. Unfortunately, the results are not
decisive; although no significant effect of lag on standard deviation was
observed, the evidence for an effect on the uniform component is also
weak, perhaps because the slower presentation attenuated the attentional
blink effect. The experiment was also comparatively low powered (11
participants, compared to 28 in the main experiment), which could explain
the null result.
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stimulus itself has disappeared (Griffin & Nobre, 2003; Souza &
Oberauer, 2016). However, the normal-plus-uniform method has
largely proved uninformative about the nature of this effect; retro-
cueing is associated with both a decrease in the von Mises standard
deviation parameter and an increase in the von Mises mixture
parameter (as well as a decrease in swap errors). In comparison,
when Bays and Taylor (2018) fit the population coding model to
data from previous retro-cue experiments, they found the effect of
the retro-cue was expressed as a simple increase in the neural gain,
with no change in tuning width. This result parallels that found for
prospective cues that orient attention to an item’s location before
it appears (Bays, 2014). A decrease in swap errors can also be
explained by increased gain (Schneegans & Bays, 2017), so the
population coding model effectively reduces three behavioral ef-
fects down to a single underlying cause.

In this study, we examined the consequences of fitting the
normal-plus-uniform mixture model to error distributions resulting
from decoding features represented in noisy neural activity. The
results of our simulation studies (see Figure 2) demonstrated the
following qualitative features. When the population activity level
(gain) was high, any decrease in gain was primarily observed as an
increase in the von Mises standard deviation parameter, whereas
the von Mises mixing proportion was relatively unchanged at
about one. Conversely, if the gain was already low, then further
decreases in gain were reflected mainly in decreases of the mixing
proportion, while the von Mises standard deviation parameter
asymptotically approached a ceiling value equal to the average
tuning width of the underlying neural population. This asymptotic
behavior could be predicted based on a mathematical analysis of
an idealized neural population, and critically, this pattern was
found to be largely robust to variations in the implementation of
the model intended to more closely approximate the heterogeneous
properties of visual neurons recorded in vivo.

Based on existing behavioral results (Bays, 2014; Taylor &
Bays, 2018) and neurophysiological evidence suggesting that the
neural activity encoding individual stimuli in memory decreases
with set size (Buschman, Siegel, Roy, & Miller, 2011; Sprague,
Ester, & Serences, 2014), we predicted that the asymptotic bound
on von Mises standard deviation would be observed in tasks in
which the number of items in memory was manipulated. Compil-
ing data from numerous previous studies of working memory for
oriented stimuli, we found evidence for such an upper bound at
approximately 20° of orientation (in a 180° range). According to
our model, this bound is indicative of the average tuning width in
the neural populations underlying orientation memory; indeed, the
observed value compares rather accurately with the median orien-
tation tuning width of cells recorded in macaque primary visual
cortex.

This finding should be treated with some caution, not least
because the behavioral results and the recordings come from
different species. While the anatomy of primary visual cortex is
reasonably well conserved across primate species (Rosa &
Tweedale, 2005), we are not aware of any systematic comparison
of visual tuning properties between humans and macaques. Indeed,
we know of no single cell recording studies of human visual
cortex, and current methods are unable to extract tuning widths
from noninvasive techniques such as fMRI or EEG (Sprague et al.,
2018). A study of single neuron responses in human auditory
cortex found that frequency tuning was narrower than is typical for

mammals, including macaques (Bitterman, Mukamel, Malach,
Fried, & Nelken, 2008).

We chose orientation tuning in area V1 as the basis of our
neurophysiological comparison primarily because of the availabil-
ity of suitable electrophysiological data. Our model is agnostic as
to brain region, and the kind of population coding on which it is
based is observed widely in the brain. Whether the intrinsic prop-
erties and connectivity of V1 make it a viable candidate region for
maintaining memory representations is debated (Bloem, Wa-
tanabe, Kibbe, & Ling, 2018; Harrison & Bays, 2018; Rademaker,
Chunharas, & Serences, 2019; Serences, 2016; Xu, 2017). Imaging
studies have demonstrated that orientations, locations, and other
visual features maintained in working memory can be decoded
from signals originating in multiple brain areas within occipital,
parietal, and prefrontal cortex (Christophel, Iamshchinina, Yan,
Allefeld, & Haynes, 2018; Sprague et al., 2014).

To what extent are the V1 tuning parameters that were our focus
here representative of visual areas more widely? Only very few
studies have directly compared orientation tuning of cells in pri-
mate V1 to cells in other visual areas, and comparison across
studies is made complicated by differences in the methods by
which tuning was assessed. Nonetheless, the available evidence
indicates tuning widths do not vary greatly between areas; for
example, Gegenfurtner, Kiper, and Levitt (1997) reported a me-
dian half-width at half-maximum (HWHM) of 27.2° in V3, only
14% higher than the 23.9° in the Ecker et al. (2010) V1 data; that
article further reported two previous studies that obtained very
similar median HWHMs in V2: 26.7° (Gegenfurtner, Kiper, &
Fenstemaker, 1996) and 29.7° (Levitt, Kiper, & Movshon, 1994).
McAdams and Maunsell (1999) made a direct comparison of
averaged tuning functions recorded from 197 neurons in V4 and
125 neurons in V1, obtaining widths that differed by � 1%.
Albright (1984) found that MT neurons sensitive to the orientation
of stationary slits had tuning approximately 23% wider than V1.

Assessing orientation tuning widths at higher levels of the visual
hierarchy becomes increasingly challenging as few studies have
systematically measured tuning for more than a handful of cells
and because neurons typically have responses that depend in a
nonlinear fashion on the conjunction of multiple visual features.
However, we have seen no evidence to suggest tuning of those
neurons with orientation selectivity in, for example, area IT
(Tanaka, Saito, Fukada, & Moriya, 1991) is significantly broader
than V1. A final consideration is that there is substantial interneu-
ron variability in tuning width in all areas that have been system-
atically assessed. This makes it difficult to obtain an unambiguous
estimate of the average width, a problem compounded by the
possibility that very broadly tuned neurons may not have met a
study’s inclusion criteria for orientation selectivity.

In attempting to relate a behavioral characteristic, obtained from
patterns of errors in orientation reproduction tasks, to a property of
the neural system, specifically the tuning of orientation-selective
visual neurons, we are conscious that we are making what some
might consider a bold claim. The population coding account of
working memory was developed with the intention of capturing
general principles of neural representation and demonstrating that
they could explain aspects of the distribution of behavioral repro-
duction errors that were otherwise difficult to account for. It is
certainly a strong version of this hypothesis that predicts a direct
correspondence between these errors and tuning parameters of
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samples of visual neurons recorded in vivo. Nonetheless, the
prediction for neurophysiology is clear, and the present results
indicate that the strong population coding hypothesis has indeed
survived this first test.

On a more pragmatic level, and irrespective of a direct corre-
spondence to neurophysiology, our results indicate a need to
reconsider the usual interpretation of normal-plus-uniform model
parameters and to reevaluate previous conclusions based on ob-
served changes in those parameters. In particular, the pattern of
results in which an experimental manipulation decreases the von
Mises mixture proportion, but leaves the von Mises standard
deviation unchanged, has been used to argue for a fixed item limit
on working memory capacity (W. Zhang & Luck, 2008), that
memories experience “sudden death” rather than gradual decay
(W. Zhang & Luck, 2009), that short-term and long-term memory
have a common limit on fidelity (Brady et al., 2013), and that
conscious awareness is an all-or-nothing process (Asplund et al.,
2014), among other examples. In contrast, our results indicate that
this pattern of results can arise simply as a consequence of model
mismatch; fitting the normal-plus-uniform model to the distribu-
tions of error predicted by population decoding produces the same
pattern of changes under conditions of low neural gain, even when
the neural model contains no element of discreteness and no
guessing process (as in the case of simulated heterogeneous pop-
ulations, which we believe most accurately reflect cortical neuro-
physiology).

The interpretation of the uniform component in working mem-
ory tasks as solely due to random guessing has been criticized
previously, on the grounds that many of the responses captured by
this component are not random but are, in fact, systematically
distributed around the feature values of other items in memory
(Oberauer & Lin, 2017; Schneegans & Bays, 2017). It has also
been shown (Bays, 2018a) that estimates of the putative upper
limit on working memory capacity derived from the mixing pa-
rameter do not coincide with estimates of the upper limit derived
from the standard deviation parameter, contrary to predictions of
memory models with fixed limits (W. Zhang & Luck, 2008).
However, the present results go further by demonstrating that
changes in the mixing proportion of the normal-plus-uniform
model could arise from a simple change in the amplitude of neural
signal underlying a memory and, conversely, that no change in the
von Mises standard deviation parameter may be observed even
when an experimental manipulation decreases the precision of
representation.

Although we question the ability of the normal-plus-uniform fit
to index guessing responses, and consider the hypothesis of a fixed
upper limit on the number of objects in working memory to be
largely refuted, it is not our contention that guesses do not occur.
At a practical level, many of the studies examined here did not
track eye movements, meaning that on some trials, participants
may have been looking elsewhere, or blinking, during presentation
of the memory array, inevitably resulting in responses that are
randomly distributed relative to the memoranda.

On the remaining trials, the relevant visual information will
have been detected by photoreceptors in the participant’s retinas
and transduced into neural activity, altering the state of the neural
system. At this stage, defining a guess becomes more challenging.
For a brain state to convey zero information about a stimulus, the
probability of that brain state arising must be identical for every

possible stimulus value; even in a hypothetical situation where an
attempt to recall a stimulus elicited no spikes from an encoding
population, the very fact that no spikes were emitted would likely
provide evidence favoring one value for the stimulus over another.
However, zero information may be too strict a criterion on the
concept of guessing. A key aspect of resource-based models of
working memory, distinguishing them from the older “slot” mod-
els, is that recall responses exist on a spectrum from high-
confidence accurate reproductions of the target to low-confidence
reports with large errors that could reasonably be described as
“guesses” (although without requiring a separate guessing mech-
anism). The population coding model provides a putative neural
basis for why responses exist along a continuum. As a result, it has
been successful in modeling metacognitive data, reliably repro-
ducing patterns of confidence judgments and the relationship be-
tween rated confidence and recall precision (Bays, 2016b).

Our claim is that the two parameters of the normal-plus-uniform
mixture model do not correspond to two independent neural or psy-
chological processes of response generation. Instead, both are driven
by the strength of the memory signal, corresponding to the amplitude
of the underlying neural activity. An unpublished article by Schurgin,
Wixted, and Brady (2018) provides a complementary interpretation of
normal-plus-uniform parameters. These authors similarly argue that
the standard deviation and mixture proportion parameters do not
reflect separable processes but are instead both driven by a single
memory strength signal. They propose that the long tails of recall
error distributions are the result of a nonuniform transformation be-
tween the physical metric space on which experimental stimuli are
defined (e.g., a color wheel) and the internal psychophysical metric
space in which they are perceived or stored. On examination, these
authors’ target confusability model was found to implement a form of
winner-take-all population decoding, with a remarkably close corre-
spondence to the neural models addressed in the present study. For
detailed discussion, see Bays (2019).

It is worth noting that some of these arguments find parallels in
the long-term memory literature, where they have been deployed
against high-threshold models of recognition memory and in favor
of signal detection accounts based on a continuous-valued famil-
iarity signal (e.g., Wixted, 2007). The observation of similar pat-
terns of errors in reporting features retrieved from long-term
memory as working memory (Brady et al., 2013; Schurgin et al.,
2018) is predictable based on the population coding account,
which does not require that features are maintained in the form of
persistent spiking during the memory delay but only assumes that
they are represented in spikes at retrieval. In particular, it is
reasonable to assume that a feature retrieved from a passive store
such as long-term memory will need to be actively represented in
spiking activity in order to be reported or reproduced (in cognitive
terms, it must be brought into working memory). Therefore, we
expect the same constraints on error distributions, imposed by the
tuning parameters of the active neural population, to apply as in a
working memory task.

It is important to acknowledge that the normal-plus-uniform
model has value as an analytical tool for psychological and neu-
roscientific research. For numerous reasons, including but not
limited to the aforementioned blinks, gaze deviations, and swap
errors, data collection may yield a set of observations that contain
contaminants arising from processes other than those of interest. In
many cases, it may be desirable to remove these contaminant trials
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even if that means removing some valid data points as well, and
the normal-plus-uniform model (or the extended three-component
model; Bays et al., 2009) can provide a valuable statistical tool for
data preprocessing, as long as the limitations of the approach are
recognized. To reiterate, any attempt to interpret the fitted standard
deviation of only the normal component of error as a measure of
representational precision must bear in mind it is a bounded
estimate, with the consequence that an absence of change in this
parameter is not evidence for fixed precision, unless one can also
show the parameter value is well below its upper bound. Addi-
tionally, responses captured by the uniform component of the
model can arise from a number of different processes—including
imprecise recall of the target feature, swap errors, or basing re-
sponses on hierarchical representations or ensemble statistics
(Brady, Konkle, & Alvarez, 2009, 2011)—and should not be
interpreted as a simple measure of guessing. The fact that these
influences are primarily absorbed by the uniform component of
the fit may, in part, be why an effect of the underlying tuning can
be recovered.

It will be important to corroborate the evidence presented here
for a relationship between behavioral performance on continuous
recall tasks and tuning characteristics of the underlying neural
populations, in particular using a range of different feature dimen-
sions, and comparing behavior to neurophysiology within individ-
uals. However, there are practical difficulties in doing so, both
because acquiring tuning functions from a sufficient sample of
neurons is an arduous and invasive neurophysiological task, rarely
attempted in humans, and because the continuous report task is
poorly suited to the requirements of training and testing nonhuman
species. We note some recent advances that suggest these chal-
lenges may soon be overcome, first, through the use of two-photon
neuroimaging to simultaneously record individual tuning of large
numbers of visual neurons (Ikezoe, Amano, Nishimoto, & Fujita,
2018) and, second, in reports of the first multiple-item continuous
recall data from nonhuman primates (Panichello, DePasquale, Pil-
low, & Buschman, 2019).
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Appendix

Theory Supporting Simulations of Population Decoding

Idealized Neural Populations

We begin by considering a population of M idealized neurons
encoding a stimulus characterized by an angle, �, where the tuning
functions of each neuron f(·) are unimodal and identical except for
translation around the circle such that preferred values (the modes
of the tuning functions) are distributed uniformly throughout the
angular space [–�, �). The mean response of the ith neuron with
preferred value �i to stimulus � is

ri(�) �
�
M f(� � �i), (8)

where � is the population gain—i.e., total expected activity
summed over the whole population of neurons.

We model spiking activity of each neuron as a stationary (i.e.
time-invariant) Poisson process, uncorrelated with the activity of
other neurons, such that the probability of the ith neuron generat-
ing n spikes during a decoding interval of length T is

Pr [ni] �
(riT)ni

ni!
exp (�riT). (9)

Retrieval of the encoded stimulus value is based on maxi-
mum likelihood (ML) decoding of the population’s joint spik-
ing activity n,

�̂ML � arg max
��

Pr [n | ��]. (10)

Because neurons are statistically independent, the total number
of spikes available for decoding is also Poisson distributed,

Pr (�ini � �) � ��e��

�! , (11)

where � � T�iri, which, assuming the population provides a dense
uniform coverage over the stimulus space, is equal to �T.

We can write the distribution function for the decoded estimate
�̂ML as a power series,

p(�̂ML) � �
��0

�

Pr (�ini � �)p(�̂ML | �ini � �) (12)

�e��p(�̂ML | �ini � 0) � �e��p(�̂ML | �ini � 1) � O(�2)

(13)

where O(�2) indicates terms of order � to the power of two or
greater (for � ¡ 0).

It follows that, as the population gain � tends to zero, and � also
tends to zero, the distribution of the decoded estimate will tend
towards a mixture of two distributions, corresponding to popu-

lation spike counts of zero and one. The former distribution,
p��̂ML � �ini � 0�, will be uniform because if there are no spikes,
Pr[n] is independent of �. The distribution of responses for a spike
count of one can be obtained by expanding and taking the loga-
rithm of Equation 10:

�̂ML � arg max
��

�
i

M

ni log (ri(��)) � �
i

M

ri(��)T. (14)

Assuming, again, a dense uniform coverage, the second term
is constant and can be ignored. As we are considering the case
that only a single neuron (the jth) generates a spike—i.e.,
nj � 1, ni	j � 0, the decoded estimate is

�̂ML � arg max
��

f(�� � �j), (15)

which is, by definition, equal to the preferred value �j of the
neuron that generated the spike. The probability that this is the ith
neuron is proportional to ri(�). Based on Equation 8, and assuming
dense uniform coverage, we find that

p(�̂ML | �ini � 1) � f(�̂ML � �), (16)

i.e., the decoded estimate is distributed around the true stimulus
value with probability density equal to the (normalized, reflected)
tuning function. Combining this with the result for zero spikes, we
conclude that as gain � ¡ 0, the distribution of errors will tend
toward a mixture of a uniform distribution and a distribution
matching the tuning function. As a case in point, if the tuning
function is von Mises with concentration parameter �, then the
error will be distributed as a mixture of a uniform distribution and
a von Mises distribution with the same concentration �. This
corresponds to the result we obtained from simulation (left-hand
panels of Figure 2 in main text).

Biological Neural Populations

The responses of real neurons that exhibit population coding,
such as orientation-selective neurons in V1, differ in several ways
from the idealized population. Nonetheless, the results of numer-
ical simulations of populations with more plausible tuning prop-
erties (e.g., based on the tuning heterogeneity of neurons recorded
in V1; right-hand panels of Figure 2 in main text) show a remark-
able similarity in their pattern of decoding errors to the idealized
case. Here we address each of the most salient differences between
real and idealized populations in turn and consider to what extent
the results obtained can be expected to hold. While the following
falls short of a full mathematical treatment, we believe it is useful
in providing intuitions for the numerical simulation results re-
ported in the main article.

(Appendix continues)
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(a) Baseline activity. Most neurons in real populations do not
fall entirely silent even when stimulus features differ strongly from
the neurons’ preferred values; their tuning functions can be ap-
proximated by the sum of a von Mises function and a constant
corresponding to a baseline level of activity. The consequences for
error distribution at low gains are already accounted for in the
equations set out here in the Appendix; one-spike errors will be
distributed in correspondence with the tuning function (Equation
16)—i.e., as a mixture of von Mises and uniform distributions.
Zero-spike errors will still be uniform. The only observable effect
will be that, for a given population gain, the von Mises mixing
proportion will be diminished compared to a population without
baseline activity (and, as a corollary, recall estimates will be less
precise). The width of the von Mises component of the error
distribution will have an upper bound at the width of the von Mises
component of the tuning function.

(b) Nonuniform distribution of preferred values. Real neu-
ral populations can show both systematic and unsystematic devi-
ations from uniform spacing of preferred values. As a result, the
second term in Equation 14, the expected summed activity of the
population, will not be constant across changes in the stimulus;
certain stimulus values will elicit more activity overall than others.
The most significant impact is in the zero-spike case; the absence
of firing now provides information about the stimulus so that
rather than being uniformly distributed, estimates will be biased
toward particular regions of the parameter space. However, be-
cause our interest here is in the distribution of estimates relative to
the true stimulus value, and—in the experimental tasks we are
examining—stimulus values were chosen at random from a uni-
form distribution, biases induced by nonuniformity of preferred
values will have no observable effect on the zero-spike component
of errors, which will be uniform just as for the idealized popula-
tion. Nonuniformity in preferred values will also bias responses
based on one or more spikes, although more weakly and with an
effect that diminishes the more spikes are available for decoding.
Relative to the true stimulus value, these biases are expected to
manifest as a broadening of the error distribution so that as gain
� ¡ 0, the width of the nonuniform component of errors will tend
to exceed, to some degree, the width of the tuning functions.

(c) Variation in tuning amplitude and width. Neural re-
sponses recorded in vivo show considerable heterogeneity in spec-
ificity and amplitude. Like nonuniformity in preferred values, this
will cause variation in the total expected activity (second term in
Equation 14) across stimulus values, with the same consequences
for decoding as described in (b). Additionally, because errors in
the one-spike state are distributed like the tuning function of the
neuron that fired the spike, variations in tuning width will make
this distribution a scale mixture of von Mises distributions of
different concentrations. Because neurons with higher response
amplitude are more likely to have generated the spike, the mixture

will be weighted by amplitude such that it reflects most strongly
the tuning widths of the most responsive neurons. Thus, at low
gains, errors will be distributed as a mixture of a uniform distri-
bution and a scale mixture of von Mises distributions. It is difficult
to predict the consequences of fitting such a distribution with a
mixture of a uniform and a single von Mises distribution, but
assuming the variation in tuning is not too great, it is likely that the
fitted von Mises component width will approximately correspond
to the average width of the tuning functions; indeed, this is what
we observed in our numerical simulations.

(d) Interneuronal noise correlations. Correlations in popu-
lation activity (specifically, “noise” correlations—i.e., those that
are independent of the stimulus) are the most challenging factor to
incorporate into the model, primarily because they are the least
well characterized by electrophysiological recordings. The most
conspicuous are “limited-range” pairwise correlations, the ten-
dency for neurons with similar preferred stimulus values to spike
in concert, and these are the type of correlation we examined in our
simulation study. The consequences of these correlations for de-
coding depend on their strength (which has been inconsistently
estimated across recording studies; see Cohen & Kohn, 2011; we
chose a value at the upper end of empirical estimates for our
simulations) and the extent to which the decoder is informed by the
correlation structure in the population; in a heterogeneous popu-
lation, a decoder who “knows” about the correlations can nullify
their effects to some extent (Ecker et al., 2011). Recent theoretical
work suggests that the most significant correlations with respect to
limiting the information content of a population are “differential
correlations”—i.e., correlations that match those induced by small
random changes in the stimulus value (Moreno-Bote et al., 2014).
However, the strength of these correlations in real neural popula-
tions is difficult to establish (Kohn, Coen-Cagli, Kanitscheider, &
Pouget, 2016).

Despite these uncertainties, there is reason to believe the pres-
ence of correlations will not strongly influence the patterns of
decoding error at low gains. First, while correlations violate the
assumption of independence between neurons used to derive Equa-
tion 11—meaning that summed activity may not be Poisson dis-
tributed—so long as there are no perfectly correlated neurons (i.e.,
all correlation coefficients are less than one), the probability of
obtaining n spikes will still decrease in proportion to �n as � ¡ 0
(as in Equation 13), so we can still justifiably base our predictions
for low gain decoding on the limiting case of one and zero spikes.
Because the marginal distributions of each neuron’s spike count
are the same as for an uncorrelated population, we do not expect
the presence of correlations to have systematic effects on the
decoding of a single spike or no spikes. Thus, while noise corre-
lations have an uncertain and potentially significant effect on the
information content of population codes in general, their influence
in the limit of low population activity is likely to be minimal.

(Appendix continues)

717AN UPPER BOUND ON ESTIMATES OF MEMORY VARIABILITY



Summary. The simulation results reported in the main article
indicate that the key predictions for error distribution under low
gain obtained by mathematical analysis of an idealized neural
population hold to a good approximation for populations with
tuning properties more representative of the biological system. We
have presented some arguments as to why this should hold true,
based again on consideration of the limiting case in which decod-
ing relies on one or zero spikes. We emphasize that we are not
claiming that decoding of single spikes makes a meaningful con-
tribution to human recall errors, only that investigations of limiting
cases can provide important insights into a system’s behavior away

from those limits. In particular, we suggest that biological popu-
lations—as a consequence of baseline activity, tuning heterogene-
ity, interneuronal correlations, and possibly other factors not yet
considered—may demonstrate at higher activity levels some of the
same decoding properties as an idealized population at the very
lowest levels.
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