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Neural tuning instantiates prior expectations
in the human visual system

William J. Harrison 1,2, Paul M. Bays3 & Reuben Rideaux 2,3,4

Perception is oftenmodelled as a process of active inference, whereby prior
expectations are combined with noisy sensorymeasurements to estimate the
structure of the world. This mathematical framework has proven critical to
understanding perception, cognition, motor control, and social interaction.
While theoretical work has shown how priors can be computed from environ-
mental statistics, their neural instantiation could be realised throughmultiple
competingencodingschemes.Usingadata-drivenapproach,hereweextractthe
brain’s representation of visual orientation and compare this with simulations
fromdifferent sensory coding schemes.We found that the tuning of the human
visual system is highly conditional on stimulus-specific variations in away that is
not predicted by previous proposals. We further show that the adopted
encoding scheme effectively embeds an environmental prior for natural image
statisticswithinthesensorymeasurement,providingthe functionalarchitecture
necessary for optimal inference in the earliest stages of cortical processing.

The human visual system is tasked with inferring environmental
attributes from image data that can be corrupted by noise from both
internal and external sources. To combat the influence of such noise, a
statistically optimal, or ideal, observerwould compute the distribution
of possible environmental states, and combine this prior information
with incoming sensory signals to infer the true state of a scene1. While
this general framework for understanding sensory encoding is rela-
tively uncontroversial, the biological instantiation of the prior for
environmental statistics is largely mysterious.

Sensory representations are thought to be tuned to behaviourally
relevant statistics of natural environments over evolutionary and
developmental timescales1–4. As shown in Fig. 1a, edges and contours in
natural images are primarily oriented along the cardinal axes5–8. There
is a corresponding anisotropy in the orientation selectivity of visual
neurons in several mammalian species that prioritises the encoding of
cardinally oriented information (Fig. 1b)9–11. Analogously, humans are
superior on a range of visual tasks for stimuli that are oriented around
cardinal orientations relative to oblique orientations12. Such biases in
encoding and behaviour are even present in artificial intelligence sys-
tems trained on naturalistic movies13,14. Several computational
accounts have attempted to unify the influence of environmental

statistics on the properties of sensory neurons as well as
perception5,15,16, but have been unable to address empirically how such
encoding is implemented at the neural level.

One way in which environmental regularities could be repre-
sented by biological systems is via sensory encoding schemes that
allocate neural resources in relation to the natural frequency of various
features. However, such models are consistent with multiple compet-
ing encoding schemes. In the domain of visual orientation, for exam-
ple, biases in perception can be explained by corresponding biases in
either the width or spacing of sensory tuning curves5,15–18. Therefore,
while it is generally accepted that perceptual biases can be linked to
anisotropies in environmental statistics, there is far less clarity about
how these anisotropies are represented in the human visual system (as
discussed in19). Moreover, leading models that account for cardinal
biases in perception equate the prior probability of horizontal and
vertical features5,15,16, whereas earlier work suggests that horizontal
features are over-represented relative to vertical6,20. These dis-
crepancies may obfuscate a clear understanding of neural encoding
schemes;we are not aware of any prior work that has attempted to link
such biased environmental statistics with population-level responses
of the humanvisual system. Theway inwhich environmental priors are
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represented in biological systems is a critical gap in our understanding
of how the brain achieves optimal inference.

In the present study, we investigated the instantiation of envir-
onmental priors in the human visual system using electro-
encephalography (EEG) and inverted encoding models21,22. We
developed novel neural decoding and generative modelling proce-
dures with which to infer anisotropic coding in the human visual sys-
tem, and compared these anisotropies with responses generated from
encoding schemes with known neural response functions. Our
approach therefore provides a generalisable means to test arbitrarily
specified sensory encoding schemes. We show, however, that no pre-
viously proposed encoding scheme can explain the empirical neural
data. Instead, we show that anisotropic neural responses can be
explained almost entirely by a redistribution of sensory tuning curves
that prioritises the most dominant environmental structure. We fur-
ther show that the recovered neural code embeds a prior for natural
image statistics within the sensory measurement, thereby simplifying
the biological instantiation of optimal inference. Our results thus
support the biological plausibility of perception as Bayesian inference
by explaining how prior expectations are encoded by the tuning
properties of sensory neurons.

Results
Decoded neural responses over-represent horizontal
We recorded human observers’ brain activity with EEG while they
viewed rapidly presented oriented gratings (randomly sampled from a
uniform distribution between 0–180°) and monitored for occasional
changes in spatial frequency (Fig. 2a). Prior to themain analyses of the
neural activity evoked by the gratings (Fig. S1), we established that
orientation information was primarily represented in parietal and
occipital EEG sensors (Fig. S2;Method - Neural Decoding); thus, we only
included the signal from these 20 sensors in all subsequent analyses

(inset of Fig. 2b, cyan dots). We first characterized orientation-related
univariate activity. We sorted the gratings into six orientation bins
(±15° around 0°, 30°, 60°, 90°, 120°, and 150°, where 0° is horizontal)
and calculated the difference between the average evoked response
for each bin from the grand average of responses, averaged over
responses to all gratings. As shown in Fig. 2b, there were significant
differences in the response to orientations between approximately 50
to 400ms following stimulus onset. The largest deviation from the
mean response to all gratings was for horizontal orientations, which
occurred in the initial stages of stimulus processing (50–100ms fol-
lowing stimulus onset). We then collapsed the responses across time
and calculated the average absolute response for each grating orien-
tation and found that response amplitude peaked around horizontal
gratings (Fig. 2c).

We next quantified temporal dynamics in orientation tuning using
inverted encoding analyses21. Using cross-fold validation, we trained
and tested an inverted model using the EEG signals to decode the
orientation of each grating from the neural activity at each time point.
From the trial-by-trial decoded signals, we derived summary para-
meter estimates of accuracy (the similarity between the decoded and
presented stimulus orientation), precision (the variability of decoded
orientations within each bin), and bias (the average decoded angle
relative to the presented orientation; see Method – Neural Decoding).

The results from the neural decoding are shown in cyan in Fig. 3.
Accuracy of decoded responses rose sharply from ~50ms following
stimulus onset and gradually reduced over the following 400ms
(Fig. 3a, cyan data), revealing that decodable information is relatively
stable across time and robust to additional incoming information, i.e.,
subsequently presented stimuli, consistent with recent work23,24. We
found a similar pattern of results for the precision of decoded
responses (Fig. 3b, cyan data), with precision increasing sharply from
~50ms and gradually reducing. Precision was significantly above
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Fig. 1 | Neural tuning anisotropies mirror natural image statistics. a Example
image of natural scene (left) and its composite orientations (right). Orientations are
coloured according to inset colour wheel; summary of relative orientation

distribution indicatedby inset histogram.bDistributionof orientation selectivity in
primary visual cortex ofmouse10, cat11, andmacaque9. Beach photo credit: Matthew
Brodeur, https://unsplash.com/photos/DH_u2aV3nGM.
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Fig. 2 | Anisotropic univariate neural responses evoked by oriented gratings.
a Schematic showing the experimental design; observers viewed rapidly presented
oriented gratings (neural probe) while monitoring for target gratings with lower
spatial frequency. Following the neural probe, participants indicated the number of
target gratings detected using the mouse. b Difference in event related potentials
for gratings within orientation bins ([0°, 30°, 60°, 90°, 120°, 150°] ±15°) from the
grand average of responses, averaged over responses to all gratings. Signals

averaged across parietal and occipital EEG sensors (blue dots on topographic map)
and participants (n = 36). Orientation bin indicated in colour; event-locked and
subsequent gratings indicated by solid and dashed black rectangles, respectively,
and cluster-corrected periods of significant difference between orientations indi-
cated by horizontal black bars. c Time-averaged absolute signal amplitude for each
gratingorientation, binned to thenearestwholedegree.Theblack line indicates the
moving averages of data points.

Article https://doi.org/10.1038/s41467-023-41027-w

Nature Communications |         (2023) 14:5320 2

https://unsplash.com/photos/DH_u2aV3nGM


chance prior to stimulus presentation, likely because the decoder
produced an over-representation of some orientations, which is con-
sistent with the anisotropic representation of orientations shown in
Fig. 2c. As expected, we found no significant deviations in bias when
averaged across orientations (Fig. 3c, cyan data). The orange data in
Fig. 3 are the results of a re-analysis of a previous study23, which wewill
describe further in the following section.

Neural coding is highly anisotropic
To quantify stimulus-specific variations in neural representations, we
measured accuracy, precision, and bias as a function of grating
orientation. To do so, we developed a novel inverted model analysis
which returns these parameter estimates for each of 180 unique
grating stimuli (one for each orientation rounded to the nearest
degree; Methods – Neural Decoding). To maximize the signal-to-noise
ratio for each bin, we averaged results over the period in which there
was above-chance accuracy (50–450ms), but the pattern of results is
stable across different periods (Fig. S3).

Neural responses were strongly anisotropic, but not in a way
predicted from any leading model of neural coding15,16. For accuracy,
we found a trimodal pattern of results such that there was one large
peak centered on horizontal and two smaller peaks positioned around
vertical (Fig. 3d). By contrast, we found a unimodal pattern of results
for precision, such that horizontal gratings were decoded most pre-
cisely (Fig. 3e).We founda sinusoidal patternof biases, comprising two
attractive curves centered on the cardinal orientations (Fig. 3f).
Although we found better accuracy and precision for horizontal
orientations, the magnitude of the attractive biases was larger around
vertical than horizontal gratings. A split-half analysis of the neural
signals in the epoch used to decode orientation parameters confirmed
this pattern of results was stable over the course of the epoch (Fig. S3).

To test the reproducibility of these results, we performed these
analyses on a separate, previously published, dataset23. This prior
study differed from our own in many aspects, such as the stimulus
parameters, the observers’ task, and the temporal design, which
resulted in differences in the temporal dynamics of the decoded signal
(as shown in Fig. 3a–c, orange data). Despite these considerable dif-
ferences across experiments, however, we found strikingly similar
stimulus-specific variations in neural representations (Fig. 3g–i). Note
that the observers’ task in the previous study was to report whether
grating stimuli were more cardinally or obliquely oriented on a given
trial, likely resulting in increased precision around those orientations
(Fig. 3h). This re-analysis therefore demonstrates that our neural
decoding method is sensitive to task-related goals, with replicable
estimates of orientation anisotropies in accuracy and bias.

Generative modelling of neural population responses
Previous theoretical work provides two primary variations in efficient
encoding schemes to explain how anisotropies in orientation coding
could be implemented at the neural level5,15,16. The proposed neural
populations are instantiated such that either neurons tuned to cardinal
orientations havenarrower tuning (Fig. 4a, uneven tuningwidth) or that
there are more neurons tuned to cardinal orientations (Fig. 4a, uneven
tuning preference); however, these competing explanations cannot be
resolved using behavioural measurements as they predict the same
patterns of estimation error. To adjudicate between these population
codes, therefore,wedevelopedanovelgenerativemodellingprocedure
to simulate EEG activity from neural tuning functions that had either
isotropic tuning, or anisotropic tuning as specified by uneven tuning
widths or uneven tuning preferences (Methods – Generative Modelling).
We then applied the same inverted encoding analyses used on the
empirical data to estimate accuracy, precision, and bias, as a function of
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Fig. 3 | Anisotropies in the neural representation of orientation revealed by
inverted encoding. Average a) accuracy, b) precision (normalized decoding
variability of decoded orientations, from 0 [uniform distribution] to 1 [no varia-
bility]), and c) bias of orientations decoded from neural responses. Cyan and
orange lines indicate data from our experiment and from a previously published
study23, respectively. Shaded error bars in (a, b) and (c) indicate SEM and CI95,
respectively; coloured horizontal bars indicate cluster corrected periods that

showed a significant difference from chance; horizontal dashed lines indicate
chance-level. Note that this difference was significant for the entire period dis-
played in (b). d–f The time-averaged (d) accuracy, (e) precision, and (f) bias of the
invertedmodel responses, at all orientations, calculated from data collected in our
experiment. Cyan lines in (d–f) indicate moving averages of data points (semi-
transparent cyan dots).g–i Same as (d–f), but calculated frompreviously published
data23.
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orientation (Fig.4b).Whileconcernshaverecentlybeenraisedaboutthe
extent to which inverted encoding analyses can be used to infer popu-
lation representations25–27, our novel generative modelling approach
overcomes such issues by directly mapping the transformation of the
output of a range of generative models to neural responses. A similar
implementationhas recently shownthat suchanapproach is sensitive to
changes in underlying population representations28. If either of the
hypothesisedmodelsofanisotropicorientationcodingexplains the true

underlying neural implementation, then the empirical data should
match the decoded responses of the simulated data from only a single
generative population code.

We first generated neural responses from an unbiased isotropic
bank of tuning functions (Fig. 4a, even tuning). As expected, this
simulation did not replicate the pattern of results observed for the
empirical data, as it produced auniformpattern of accuracy, precision,
and biases across all orientations (Fig. 5a). We then generated neural
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responses from an anisotropic bank of tuning functions specified by
narrower tuning around the cardinals (Fig. 5b). Although this popula-
tion code produced a non-uniform distribution of parameter esti-
mates, the pattern of results did not match the empirical data:
accuracy and precision peaked around the obliques, not cardinals, and
there was no clear pattern of biases. Finally, we generated neural
responses from tuning functions with orientation tuning preferences
clustered around the cardinals (Fig. 5c). The pattern of accuracy, pre-
cision, and biases produced by this simulation captured the empirical
results best out of the three models tested: accuracy and precision
peaked around cardinals, with modest attractive biases. In contrast to
the empirical results of the two datasets, however, the peak accuracies
and biases around horizontal and vertical orientations were equiva-
lent, which was expected from cardinally symmetric response func-
tions, revealing that the modelled response functions did not fully
reflect the neural architecture underlying orientation anisotropies in
human visual cortex.

Neither of the proposed tuning schemes reproduced the empiri-
cal results. We therefore exhaustively searched the space of cardinal
and oblique tuning biases to test which population code best
explained the empirical data. We chose to manipulate tuning pre-
ferences because the uneven tuning preference scheme provided the
most promising match to the empirical data (Fig. 5c). The modelled
data and empirical data were compared using their discriminability29, a
metric that considers the precision and bias–but not the accuracy –of
the decoded signal. We computed the similarity between the

discriminability of the empirical results and from data generated from
population codes comprising all possible combinations of horizontal
and vertical biases (Fig. 6a), i.e., by independently varying the clus-
tering around horizontal and vertical orientations. We found that the
model that best described the empirical data was a population code
with anisotropic cardinal biases, where horizontals are ‘more pre-
ferred’ than verticals by a ratio of approximately 2:1. These results are
consistent with our univariate analyses (Fig. 2), and confirm that there
is an asymmetry between cardinal orientations, such that horizontals
are more preferred than verticals. Further, the ratio of horizontal to
vertical asymmetry is consistent with previous estimates of the
orientation content in natural visual scenes, but not human-made
scenes5.

A population code with uneven tuning preferences and an asym-
metric cardinal anisotropy captured the empirical resultswell (Fig. 6b):
this model reproduced the increased precision at horizontal orienta-
tions, and the sinusoidal pattern of biases with a larger attractive bias
around vertical gratings. It also reproduced the trimodal distribution
of accuracy, despite this metric not being used in the discriminability
metric used in the fitting procedure. It is unclear, however, to what
extent the redistribution of tuning curves around horizontal and ver-
tical each influence the decoded pattern of anisotropic orientation
representation; that is, which changes in accuracy, precision, and
biases are related to the horizontal preference, and which are related
to the vertical preference? To address this question, we generated EEG
data from neural tuning functions with tuning preferences for
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Modelling for detailed description) between empirical and simulated data as a
function of horizontal and vertical clustering in the generative population code;
less error indicates greater similarity between empirical and simulated data. The
black outline indicates the regionwith the lowest 5% of error, and the white dashed
circles indicate the position of the example population codes shown on the right.
The red dotted circle indicates the position of the best fitting model (4). Results of

simulations using neural response functions with (b) asymmetric cardinal tuning
preferences and (c) unimodal horizontal tuning preference. The left column shows
the neural response functions from which data were derived. The columns to the
right are the parameter estimate results. Dark grey lines indicate moving averages
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horizontal orientations only (Fig. 6c). This simulation captured many
of the phenomena observed in the empirical results: it recapitulated
the increased accuracy and precision for horizontal gratings, and the
asymmetric attractive biases around cardinal gratings. We did not
expect a horizontal preference to capture the empirical patterns of
results more closely than the classic symmetric cardinal preference
models shown in Fig. 5b, c.

A key diagnostic characteristic of the two empirical datasets is the
reduction in accuracy for vertical orientations (Fig. 3d, g). This feature is
only captured by a population code with asymmetric cardinal pre-
ferences (Fig. 6b). To understand why asymmetric cardinal preferences
are critical to reproduce the accuracy around vertical orientations, we
varied the noise level in the generative model. In the models presented
above, we matched each population code to the signal-to-noise of the
empirical data by titrating the noise injected into the simulated data
(seeMethod – Generative Modelling). By reducing the noise level in the
generativemodels, we can uncover the explanation for the reduction in
accuracy aroundvertical: the reduced accuracy around vertical is due to
a small repulsive bias (Fig. S4). This repulsive bias around vertical and
the attractive bias around horizontal are additive, resulting in the
appearance of a plateau in overall bias around vertical that can be seen
in both empirical datasets (Fig. 3f, i), as well as the generated data
(Fig. 6b), all of which include the influence of noise.

Joint coding of the prior and sensory measurement
A general solution to performing Bayesian inference involves embed-
ding the prior within the sensory measurement30–32. In brief, if tuning
curves are distributed such that their sum approximates the log of the
prior, then the posterior is a linear readout of the population response,
simplifying the biological instantiation of optimal inference (full
mathematical detail is given in Method – Joint coding of the prior and
sensory measurement). We therefore compared how well the proper-
ties of the best-fitting population code, derived from our data-driven
approach described above, capture environmental priors for natural
and constructed scenes (Fig. 7). This analysis revealed that the sensory
tuning curves do indeed embed the prior for natural image statistics
(left panels, Fig. 7). The activity of the population code that best cap-
tures the responses of the human visual system therefore provides a
stimulus representation from which a full (log) posterior can be
computed through simple linear summation of activity, resulting in
optimal inference in natural scenes. By comparison, the properties of
the population code provide a poorer description of the prior for
constructed scenes (right panels, Fig. 7).

Discussion
We investigated whether the human visual system represents environ-
mental attributes that are critical for optimal inference. Using our novel

decoding analyses, we quantified surprising anisotropic neural
responses that deviated from the expectations of leading models of
visual prediction. By developing novel generative modelling tools, we
were able to recover the underlying tuning properties of the population
code driving the anisotropic neural responses. In addition to the car-
dinal anisotropy of orientation coding suggested by prior computa-
tional and behavioural investigations5,15,16, we reveal that an asymmetry
in cardinal representations is an inherent property of visual coding.
Most importantly, our data provide the first clear evidence for a recent
hypothesis about howpriors are instantiated inbiological systems30: the
prior is embedded in the sensory measurement (Fig. 7). By adjusting
tuning curves to prioritise horizontal orientations and, to a lesser
extent, vertical orientations, the early visual system implicitly combines
the prior for natural images with incoming sensory signals. This coding
scheme negates the need for the prior to be represented by a separate
population of neurons, thereby improving neural efficiency.

The prioritisation of neural resources to horizontal orientations
can be understood in the context of efficient coding33. A neural code is
efficient if resources are allocated proportionally to the variation in the
input signal along some feature dimension. While most prominent
computational work models the anisotropic distribution of orienta-
tions as being symmetrical across cardinals, differences in horizontal
and vertical contrast energy have been reported in measurements of
natural image statistics6,7 and a matching asymmetry has been
observed in the tuning preferences of orientation-selective neurons9–11.
For example, in a recent analysis of over 26,000 high quality digital
photos of natural images, Harrison7 reported that horizontal orienta-
tions were 10% more prevalent relative to vertical orientations. In an
earlier analysis of 60 images, Hansen and Essock20 found a similar over-
representation of horizontal information acrossmultiple spatial scales,
suggesting thedominanceof horizontal information is a scale invariant
property of natural scenes. In their Bayesian account of visual orien-
tationperception,Girshick et al.5 derived estimates of observers’priors
for orientation and found a close correspondence to cardinally-biased,
but symmetric, environmental statistics. Close inspection of their
results, however, shows that both the average of observers’ recovered
prior and the distribution of image statistics indicated greater repre-
sentation of horizontal over vertical information, particularly in ima-
ges of natural scenes (their data are re-plotted as the coloured traces in
Fig. 7). A sensory population code that prioritises horizontal infor-
mation over vertical, and cardinals over obliques, can thus be inter-
preted as representing the true distribution of environmental statistics
derived fromnatural scenes. It is interesting to note that the sumof the
tuning curves provides a relatively poor approximationof the statistics
of constructed scenes, raising the possibility that the default tuning of
sensory systems depends more on statistics accumulated over evolu-
tionary time scales than developmental time scales.
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Fig. 7 | The redistribution of tuning curves effectively embeds a prior for nat-
ural image statistics in the sensory measurement. a Horizontal-biased popula-
tion code that best explained the neural responses, as described in Results.b, c The
left and right plots show the match of the properties of this population code with
the distribution of orientation statistics for natural scenes (b) and constructed
scenes (c) as measured by Girshick et al. (2011). In each plot, the coloured trace
shows the probability of each orientation in a set of images, while the black trace
shows the exponentiated sum of the best fitting tuning functions recovered from

our generative model. Extending theory developed by Simoncelli (2009), the
exponentiated sum of the tuning curves is proportional to the prior for natural
scenes: expðP

n
f nðθÞÞ / P θð Þ Assuming Poisson neural variability, this allows the

log posterior to be obtained as a weighted sum of the neural responses:
logP θjrð Þ= P

n
rnlog f n θð Þ+ const:, providing an efficient means by which to per-

form optimal inference in the human visual system. Beach photo credit: Matthew
Brodeur, https://unsplash.com/photos/DH_u2aV3nGM. City street photo credit:
Andrea Cau, https://unsplash.com/photos/nV7GJmSq3zc.
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Linking anisotropies in orientation perception to neural tuning
schemes is challenging because behavioural measurements are con-
founded by response biases, which can be in direct conflict with per-
ceptual biases34. Hereweavoided this confoundbymeasuringbiases in
the neural representation of passively viewed oriented gratings, and
we then replicated these effects using an independent dataset inwhich
observers were actively engaging in a orientation discrimination task.
A further advantage of ourmethod is that it allowed us to directly test,
through generative modelling, the population level neural tuning
properties that give rise to anisotropies in the representation of
orientation. The impact of thismethod is highlightedby the inability of
previous work to adjudicate between population codes designed with
uneven tuning preferences versus uneven tuning widths. Our results
may appear to contradict earlier neuroimaging studies that found
horizontal and vertical orientations are equally over-represented in
cortex relative to obliques35. However, close inspection of these earlier
data also reveals a horizontal/vertical asymmetry. It is therefore
likely that the assumption of equal cardinal responsiveness has led
the asymmetries we found to have been overlooked in more recent
neuroimaging investigations36,37.

Beyond providing a diagnostic marker for the underlying neural
implementation of orientation tuning in the human visual cortex, the
reduced accuracy and small repulsive bias around vertical gratings
(Fig. S4) may explain previous inconsistencies in the behavioural lit-
erature of perceptual cardinal biases. In particular, both attractive
and repulsive perceptual biases have been reported around the car-
dinal orientations, when measured using different experimental
paradigms5,34,38. This discrepancy has been explained within a Bayesian
framework as the result of either manipulating external (stimulus) or
internal (neural) noise16. Under this framework, humans are assumed
to have a prior distribution that gives preference to cardinal orienta-
tions. Increasing external noise results in a greater reliance on this
prior (attraction towards cardinals), whereas increasing internal noise
produces a bias away from this prior (repulsion away from cardinals).
Our findings show that there is a small repulsive bias around vertical,
which is surrounded by a - considerably larger - attractive bias. It is
feasible that the smaller repulsive bias could be obscured by the larger
attractive bias under conditions of low signal-to-noise. Thus, this
provides an alternative explanation for how manipulating noise could
lead to observing either attractive or repulsive biases (at least around
vertical orientations), which can be tested in future psychophysical
investigations.

The neural responses recorded in the current study with EEG
represent activity from primary visual cortex in addition to other
upstream visual areas (e.g., V2). Thus, while we modelled the orienta-
tion tuning functions of neurons based on the known properties of V1
neurons, it is likely that other neurons within the visual processing
cascade, which have more complex tuning properties, also con-
tributed to the recorded representation. While neurophysiological
work suggests similar orientation biases are present in higher visual
regions, e.g., V5/MT39, future work using an imaging technique with
better spatial specificity, e.g., fMRI, could test whether the same prior
is instantiated across different cortical areas.

In summary, here we apply novel neural decoding and generative
modelling approaches that reveal, replicate, and explain hitherto
unknown aspects of sensory anisotropies. For the first time, we adju-
dicate between competing models of uneven neural tuning, demon-
strating that uneven tuning preferences, but not tuning width, explain
cardinal biases. We further show that anisotropies in the representa-
tion of orientation are almost entirely explained by a preference for
horizontal orientations, while the smaller preference for vertical
orientations produces a small repulsive bias that may account for
previous discrepancies in attractive and repulsive cardinal bias. More
broadly, we demonstrate both a new neural decoding algorithm and a
corresponding generative modelling procedure that can be used in a

principled manner to describe neural representations in high fidelity
and explain their underlying architecture.

Methods
Participants
Thirty-seven neurotypical human adults (mean ± standard deviation
age, 23.8 ± 4.6 years; 23 females) participated in the experiment.
Observers were recruited from The University of Queensland, had
normal or corrected-to-normal vision (assessed using a standard
Snellen eye chart), and were required to pass an initial screening ses-
sion to qualify for the experiment (see Stimuli, task, and procedure
Section for details). Data from one participant were omitted from
analyses due to hardware failure. All participants were naïve to the
aims of the experiment and gave informed written consent. The
experiment was approved by The University of Queensland Human
Research Ethics Committee.

Apparatus
The experiment was conducted in a dark, acoustically and electro-
magnetically shielded room. The stimuli were presented on a 24-inch
ViewPixx monitor (VPixx technologies, Inc., Montreal) with 1920
× 1080 resolution and a refresh rate of 144Hz. Viewing distance was
maintained at 45 cm using a chinrest, meaning the screen subtended
61.18° × 36.87° (each pixel 2.4’ × 2.4’). Stimuli were generated in
MATLAB v2020a (The MathWorks, Inc., Matick, MA) using Psycho-
physics Toolbox40,41 v3.0.18.13 (see http://psychtoolbox.org/). EEG
signals were recorded using 64 Ag-AgCl electrodes (BioSemi,
Amsterdam, Netherlands).

Stimuli, task, and procedure
The stimuli comprised sinewave gratings (1 cycle/°, 0.5 contrast, ran-
domphase) presented centrally within a circular aperture (radius 4.2°),
which was smoothed at the edges, on a mid-grey background. A cen-
trally positioned green fixation dot (radius 0.25°) was presented to
reduce eye movements. To maintain attention, participants were
instructed to count the number of ‘target’ stimuli, in which the spatial
frequency of the grating was reduced (0.66 cycle/°). Between 0 and 3
targets appeared during each trial, selected at random.

Trials consisted of grating stimuli (orientations randomly selected
between 0 and 180°) presented for .05 s each, separated by a blank
0.15 s interstimulus-interval (ISI) for 10 s (neural probe). The numbers
0–3 were then displayed on the screen and participants were given 2 s
to indicate the number of targets presented, using the mouse (detec-
tion task). This was repeated 12 times per block. Participants per-
formed 6 blocks of trials (~20min), receiving feedback on their
detection accuracy at the end of each block.

Prior to the main experiment, participants were required to pass
an initial screening session in which they completed the same task but
without EEG. To pass the screening, participants were required to
perform above chance (25%) on the detection task. Further, they were
required to show a significant repulsive bias on a separate orientation
reproduction task (assessed using a one-tailed t-test), which was rela-
ted to data collected for a different study. This resulted in approxi-
mately half of the participants being screened out (32 due to
insufficient repulsive bias, and 8 due to both insufficient repulsive bias
and low detection task performance). Screening and experiment ses-
sions were separated by a minimum of 24 h. Note that the individuals
who were screened out are not included in the Participants section.

EEG
The EEG signals were digitised at 1024Hz sampling rate with a 24-bit
A/D conversion. The 64 active scalp Ag/AgCl electrodes were arran-
ged according to the international standard 10–20 system for elec-
trode placement42 using a nylon head cap. As per BioSemi system
design, the common mode sense and driven right leg electrodes
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served as the ground, and all scalp electrodes were referenced to the
common mode sense during recording. Offline EEG pre-processing
was performed using EEGLAB v2021.145 in accordance with best
practice procedures43,44. The data were initially down-sampled to
512Hz and subjected to a 0.5 Hz high-pass filter to remove slow
baseline drifts. Using EEGLAB, electrical line noisewas removedusing
pop_cleanline.m with the following parameters: bandwidth = 2; all
channels; linefreqs = [50 100 150 200 250]; normSpectrum =0;
p =0.01; pad = 2; scanforlines=true; sigtype=channels; tau = 100; win-
size = 4; winstep = 4. The clean_artifacts.m45 function (default para-
meters) was used to remove bad channels (identified using Artifact
Subspace Reconstruction), which were then spherically interpolated
from the neighbouring electrodes. Only individual channels were
removed and interpolated, no time periods were removed from the
data. Data were then re-referenced to the common average before
being epoched into segments around each neural probe stimulus
(−0.25 s to 0.5 s from the stimulus onset). Systematic artefacts from
eye blinks, movements and muscle activity were identified using
semi-automated procedures in the SASICA toolbox46 and regressed
out of the signal.

Neural decoding
To characterise sensory representations of the stimuli, we used an
inverted modelling approach to reconstruct the orientation of the
gratings from the EEG signal22. We make several advances in the
application of our models that negate the recent concerns25,26 about
the validity of the properties of the recovered population code (see
Generative Modelling section below). A theoretical (forward) model
wasnominated that described themeasured activity in the EEG sensors
given the orientation of the presented grating. The forwardmodel was
then used to obtain the inverse model that described the transfor-
mation from EEG sensor activity to stimulus orientation. The forward
and inverse models were obtained using a ten-fold cross-validation
approach in which 90% of the neural probe data were used to obtain
the inverse model on which the remaining 10% were decoded. In our
modelling, we assume that EEG sensor noise is isotropic across
orientations and additive with the signal; while this assumption would
be violated if therewere a systematic relationship between orientation
preference and anatomical location across participants, abundant
evidence rules out such a relationship in human and non-human
brains9,47–49.

Similar to previous work21, the forward model comprised six
hypothetical channels, with evenly distributed idealized orientation
preferences between 0° and 180°. Each channel consisted of a half-
wave rectified sinusoid raised to the fifth power. The channels were
arranged such that a tuning curve of any orientation preference could
be expressed as a weighted sum of the six channels. The observed EEG
activity for each presentation could be described by the following
linear model:

B=WC+E ð1Þ

where B indicates the (m sensors × n presentations) EEG data, W is a
weight matrix (m sensors × 6 channels) that describes the transfor-
mation from EEG activity to stimulus orientation, C denotes the
hypothesized channel activities (6 channels × n presentations), and Ε
indicates the residual errors.

To compute the inverse model, we estimated the weights that,
when applied to the data, would reconstruct the underlying channel
activities with the least error. In line with previous magnetencephalo-
graphy work24,50, when computing the inverse model, we deviated
from the forward model proposed by21 by taking the noise covariance
into account to optimize it for EEG data, given the high correlations
between neighbouring sensors. We then estimated the weights that,
when applied to the data, would reconstruct the underlying channel

activities with the least error. Specifically, B and C were demeaned
such that their average over presentations equalled zero for each
sensor and channel, respectively. The inverse model was then esti-
mated using a subset of the data, selected through cross-fold valida-
tion (10 folds). The hypothetical responses of each of the six channels
were calculated from the training data in each fold, resulting in the
response row vector ctrain,i of length ntrain presentations for each
channel i. The weights on the sensors wi were then obtained through
least squares estimation for each channel:

wi =Btrainc
T
train,i ctrain,ic

T
train,i

� ��1 ð2Þ

where Btrain indicates the (m sensors × ntrain presentations) training
EEG data. Subsequently, the optimal spatial filter vi to recover the
activity of the ith channel was obtained as follows50:

vi =
eΣi

�1
wi

wT
i
eΣi

�1
wi

ð3Þ

where eΣi is the regularized covariance matrix for channel i. Incorpor-
ating the noise covariance in the filter estimation leads to the sup-
pression of noise that arises from correlations between sensors. The
noise covariance was estimated as follows:

bΣ
i
=

1
ntrain�1

εiε
T
i ð4Þ

εi =Btrain�wictrain,i ð5Þ

where ntrain is the number of training presentations. For optimal noise
suppression, we improved this estimation by means of regularization
by shrinkage using the analytically determined optimal shrinkage
parameter50, yielding the regularized covariance matrix eΣi.

In the orientation focused analyses (Fig. 3d, e), we adapted a
method recently introduced by27, which uses sparsely distributed
channels to produce a dense representation of channel responses. The
standard inverted modelling approach typically involves training and
testing a model using a relatively small number of channels (e.g., 6) to
represent the entire spectrum of identities across a given feature (e.g.,
orientation). The ‘enhanced inverted encoding model’ (eIEM) method
involves repeatedly computing the inverse model, while rotating the
forward model channel orientation preferences until each orientation
is represented by a channel response (e.g., 180 channels, one for each
orientation). The eIEMmethodwas established using data with feature
identities sampled from discrete bins (e.g., 0°, 30°, 60°, 90°, 120° and
150°), which determine: a) the number of channels used in eachmodel
(e.g., 6), and b) the number of feature identities from which predic-
tions could be derived from the dense output (e.g., 6). By contrast, we
presented observers with orientations sampled from a continuous
uniform distribution of all orientations. Thus, we first sorted pre-
sentations into five orientation bins (0°, 36°, 72°, 108°, and 144°). After
rotating channels to produce 180 channel responses for each pre-
sentation, we then binned the responses according to the original
grating orientation (rounded tonearest thenearest degree); that is, the
orientation of the presentation prior to binning. This allowed us to
produce high-resolution model predictions for each orientation. We
performed this analysis at each time point within the epoch, but to
improve the signal of the estimates we averaged predictions across
time points when there was reliable decoding accuracy (50–450ms
following stimulus onset).
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For each presentation, we decoded orientation by converting the
channel responses to polar form:

z = c � e2iφ ð6Þ

and calculating the estimated angle:

θ̂=
arg zð Þ

2
ð7Þ

where c is a vector of channel responses andφ is the vector of angles at
which the channels peak (multiplied by two to project 180° orientation
space onto the full 360° space). From the decoded orientations, we
computed three estimates: accuracy, precision, and bias. Accuracy
represented the similarity of the decoded orientation to the presented
orientation24, and was expressed by projecting the mean resultant
(averaged across presentations of the same grating orientation) of the
difference between decoded and grating orientations onto a vector
with 0°:

r̂θ =Re �R
� �

, �R=
1
n

Xn
j = 1

exp i θ̂j � θ
� �� �

ð8Þ

Precision was estimated by calculating the angular deviation51 of
the decoded orientations within each orientation bin:

σ̂θ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� j�Rj� �q

ð9Þ

and normalized, such that values ranged from0 to 1, where 0 indicates
a uniform distribution of decoded orientations across all orientations
(i.e., chance-level decoding) and 1 represents perfect consensus
among decoded orientations:

p̂θ = 1�
2σ̂θffiffiffi
2

p ð10Þ

Bias was estimated by computing the circular mean of angular
difference between the decoded and presented orientation:

b̂θ = argð�RÞ ð11Þ

Prior to the main neural decoding analyses, we established the
sensors that contained the most orientation information by treating
time as the decoding dimension and obtaining inversemodels for each
sensor, using 10-fold cross-validation. This analysis revealed that
orientation was primarily represented in posterior sensors (Fig. S2);
thus, for all subsequent analyses we only included signals from the
parietal, parietal-occipital, occipital, and inion sensors to compute the
inverse model.

Generative modelling
To characterise changes in neural tuning which might have given rise
to the empirical results observed, we used inverted modelling to
decode orientation from simulated EEG data produced by neural
populations with either isotropic tuning or anisotropic tuning speci-
fied by differences in tuning preferences or tuning widths. Although
the empirical EEG data comprises a time series of neural activity, we
only simulated temporally static data as we were comparing this with
the time averaged empirical data. Simulated data were produced by
assuming variable weights between a bank of response curves, each of
which represented the aggregate responses of neural populationswith
similar tuning, with different orientation preference (n = 16) and EEG
sensors (m = 32). As with the forwardmodel, the neural functions were
arranged such that a tuning curve of any orientation preference could
be expressed as a weighted sum of the 16 functions. Thus, for each

simulated presentation, the EEG activity was computed as:

si = cθwi +u ð12Þ

where si denotes the activity of sensor i, cθ indicates the set of tuning
curves evaluated at orientation θ,wi denotes the weights between the
sensor i and the response functions, and u indicates Gaussian
noise (s.d. = 6). The noise level was selected to approximate the level of
noise observed in the empirical results. Neural tuning consisted of von
Mises functions (κ = 2), normalized such that they ranged from 0 to 1.
Neuron-to-sensorweights (wi)were randomly assigned fromauniform
distribution between 0 and 1. This range was selected for simplicity.
The variance in weights between the activity of subpopulations of
neurons and EEG sensors in the brain is likely different, however, our
simulations confirmed that modifying this range had no qualitative
influence on the pattern of results. Uneven tuning preferences were
modelled by shifting the neural tuning functions according to the sum
of two von Mises derivative functions (κ =0.5) centered on 0°
(amplitude = 15) and 90° (amplitude = 10), such that the maximum
shift applied was 15°. This resulted in shifting the neural response
functions towards the cardinals, with increased clustering around
horizontal relative to vertical. Uneven tuning widthsweremodelled by
narrowing the neural tuning functions according to the sumof two von
Mises functions (κ = 2) centered on 0° (amplitude = 15) and 90°
(amplitude = 10), such that the maximum increase to κ was 15. This
resulted in narrowing the neural response functions that preferred
cardinal orientations, with increased narrowing around horizontal
relative to vertical.

In line with the empirical experiment, the orientation of each
simulated presentation was drawn from a uniform distribution
between 1 and 180°. We simulated 3600 presentations from the even
and uneven neural response functions. We then applied the same
analyses as used on the empirical data to estimate accuracy, precision,
and bias as a function of orientation. Thefinal presented results are the
average of parameters estimated from 36 simulated datasets.

To find the orientation anisotropy that best captured the
empirical neural data, we computed the difference (error) between the
empirical data and data that was simulated using all possible combi-
nations of cardinal and oblique neural tuning preferences. The error
was calculated as the difference between the discriminability of the
decoded orientations from empirical and simulated data. Discrimin-
ability combinesmeasures of precision and bias to provide an index of
how discriminable signals are at each orientation29:

dθ =
σ̂θ

1 + b̂
0
θ

ð13Þ

where b̂
0
θ is the change in bias at orientation θ, which we estimated as:

b̂
0
θ≈

b̂ θ+ δ
2

� �� b̂ θ� δ
2

� �
δ

ð14Þ

where δ indicates the size to the window of estimation (16°). The
generative data was stochastic, due to the injected noise, so we cal-
culated the error ten times for each model and used the average.
Neural tuning preference anisotropies were produced in the same
manner as described above, and the amplitude of the shift was inde-
pendently varied around both horizontal (0°) and vertical (90°)
orientations, from−45° to 45°, in increments of 1°, resulting in a total of
91 × 91 = 8281 models.

Joint coding of the prior and sensory measurement
Although there is general agreement that the brain combines prior
information with sensory signals, the physiological implementation of
such Bayesian inference is less clear52–55. In a population of N neurons
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with independent Poisson variability and tuning curves f(θ), the joint
likelihood of the response of the population given a stimulus of
orientation θ is:

P rjθð Þ=
YN
n

f n θð Þrn
rn!

e�f nðθÞ ð15Þ

where r is a vector containing each unit’s spike count and rn is the
number of spikes for unit n. It is convenient for biological sensory
systems to signal log probabilities so that joint (log) probabilities can
be computed linearly, for example by summing spikes:

log P rjθð Þ=
XN
n

rnlog f nðθÞ �
XN
n

f nðθÞ �
XN
n

log rn! ð16Þ

Bayes’ rule tells us that the posterior is computed by multiplying
the likelihood, for example as computed above, with a prior, P(θ), and
dividing by the marginal likelihood, P(r). Using log probabilities, the
formulation for computing the log-posterior can then be written as:

logP θjrð Þ=
XN
n

rnlog f nðθÞ �
XN
n

f n θð Þ+ logP θð Þ+C1 ð17Þ

where C1 is a normalizing constant that does not depend on θ and can
be ignored for purposes of comparing posterior probabilities or
obtaining a maximum a posteriori (MAP) estimate. Estimating the
posterior in this way would require at least three populations of neu-
rons (or if, for example, the computations are performed via the
weights of lateral connections, three sets of weights): one set to
encode the stimulus, one to represent theprior, and another todecode
the signal. As noted by Simoncelli30, a more general solution to per-
forming Bayesian inference involves embedding the prior into the
sensory measurement by distributing the sensory tuning curves such
that their sum is equal (up to an additive constant) to the log of the
prior:

XN
n

f n θð Þ= log P θð Þ+C2 ð18Þ

In this case, the second and third terms of Eq. 13 cancel out, such
that the full log-posterior distribution can be computed (up to an
additive constant) as a simple linear function of the sensory mea-
surement:

log P θjrð Þ=
XN
n

rnlog f nðθÞ+C3 ð19Þ

This solution is more efficient than encoding the prior in a sepa-
rate population, requiring only two populations: one to encode
the stimulus and another to obtain the linear readout over the
population.

The equations above specify optimal inference for a population
of spiking neurons, whereas we measured meso-scale activity across
the scalp. On the assumption that the best fitting population code we
recovered from the neural data is a linear transformation of the
underlying neural activity, then if the prior is embedded in the sensory
measurement Eq. 18 should hold. Or equivalently,

e
PN

n
f n θð Þ / PðθÞ ð20Þ

To test this, wefit the exponentiated sumof the best-fitting tuning
curves in our study to the distribution of image statistics as measured
by Girshick et al.5 for natural scenes versus constructed scenes using
two separate linear models. While the sum of the tuning curves pre-
dicted both sets of image statistics (ps < .001), they almost perfectly

recovered the statistics of natural scenes, accounting for 92% of the
variation in natural scene statistics, while providing a poor fit to con-
structed scenes, accounting for only 46% of the variation in con-
structed scene statistics. The requirement that the exponentiated sum
of the tuning curves is proportional to the prior, as specified by Eq. 20,
is therefore met for natural image statistics. The recovered coding
scheme of the human visual system thus embeds the prior in the
sensorymeasurement, providing a concisemeans bywhich to perform
optimal inference.

Re-analysis of published data
To test the reproducibility of our empirical results, we re-analyzed a
dataset from a comparable, previously published, study from another
laboratory23. This dataset comprised 32 channel EEG activity in
response to viewing of uniformly sampled oriented gratings. In King
and Wyart’s23 experiment, observers viewed eight rapidly presented
(5 Hz) oriented gratings per trial and were tasked with reporting
whether the gratings were, on average, alignedmore to the cardinal or
oblique axes. In total, there were approximately 4800 presentations
per participant, with 15 participants included; for a more detailed
description of the experiment and data, see23. We received the pre-
processed data from the authors, on which we performed the same
inverted encoding analyses as used on the data from our experiment.

Statistical analyses
Statistical analyses were performed in MATLAB v2020a and CircStat
Toolbox v1.12.0.056. For analyses of differences in univariate responses
and parameter estimates between orientations as a function of time, a
cluster correction was applied to remove spurious significant differ-
ences. First, at each time point, the effect size of orientation was cal-
culated. A repeated measures analysis of variance was applied to
calculate the F statistic associatedwith orientation. Next, we calculated
the summed value of these statistics (separately for positive and
negative values) within contiguous temporal clusters of significant
values. We then simulated the null distribution of the maximum
summed cluster values using permutation (n = 1000) of the orienta-
tion labels, from which we derived the 95% percentile threshold value.
Clusters identified in the datawith a summedeffect-size value less than
the threshold were considered spurious and removed.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The EEG data generated in this study have been deposited in the fol-
lowing OSF database: https://osf.io/5ba9y/. Source data are provided
as a Source Data file. Source data are provided with this paper.

Code availability
Code has been deposited in GitHub (https://github.com/
ReubenRideaux/Neural-tuning-instantiates-prior-expectations-in-the-
human-visual-system).
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