
Journal of Vision (2021) 21(12):7, 1–21 1

Mechanisms of feature binding in visual working memory are
stable over long delays

Georgina Brown*
Department of Psychology, University of Cambridge,

Downing Street, Cambridge, UK

Iham Kasem*
Department of Psychology, University of Cambridge,

Downing Street, Cambridge, UK

Paul M. Bays
Department of Psychology, University of Cambridge,

Downing Street, Cambridge, UK

Sebastian Schneegans
Department of Psychology, University of Cambridge,

Downing Street, Cambridge, UK

The ability to accurately retain the binding between the
features of different objects is a critical element of visual
working memory. The underlying mechanism can be
elucidated by analyzing correlations of response errors
in dual-report experiments, in which participants have
to report two features of a single item from a previously
viewed stimulus array. Results from separate previous
studies using different cueing conditions have indicated
that location takes a privileged role in mediating binding
between other features, in that largely independent
response errors have been observed when location was
used as a cue, but errors were highly correlated when
location was one of the reported features. Earlier results
from change detection tasks likewise support such a
special role of location, but they also suggest that this
role is substantially reduced for longer retention
intervals in favor of object-based representation. In the
present study, we replicated the findings of previous
dual-report tasks with different cueing conditions, using
matched stimuli and procedures. Moreover, we show
that the observed patterns of error correlations remain
qualitatively unchanged with longer retention intervals.
Fits with neural population models demonstrate that
the behavioral results at long, as well as short, delays
are best explained by memory representations in
independent feature maps, in which an item’s features
are bound to each other only via their shared location.

Introduction

Feature binding in visual working memory is the
mechanism that allows us to memorize not only separate
visual features, such as colors, shapes, and orientations,

but also their specific conjunctions that characterize
objects in the visual world (Treisman, 1996). The
properties and limitations of this mechanism have been
a topic of active research for more than two decades
(see Schneegans & Bays, 2019, for review). The seminal
study of Luck and Vogel (1997) popularized slot-based
models, in which bound object representations that
encompass all features of a stimulus are the natural
units of working memory. This conceptualization was
based on results from change detection experiments,
indicating that working memory capacity was limited
only in the number of objects to be memorized, rather
than the number of constituent visual features.

Subsequent research showed that such object-based
capacity limits only captured behavioral performance
when the objects were characterized by a combination
of different (and simple) features, but not when they
combined two features of the same kind, such as two
different colors (Wheeler & Treisman, 2002; Xu, 2002).
These findings instead pointed toward separate feature
stores with independent capacity limits. The object file
theory (Kahneman et al., 1992; Wheeler & Treisman,
2002; Treisman & Zhang, 2006) proposes that such
separate stores for unbound features coexist with a
limited set of object files, bound object representations
that are formed by sequentially focussing attention on
individual stimuli.

Whereas classical change detection tasks have to
rely on comparisons of performance between different
experimental conditions to assess memory for features
and bound objects, analogue report paradigms can
elucidate binding mechanisms more directly. In this type
of task, participants view a memory sample array and
then report a feature of a cued item on a continuous
scale (Wilken & Ma, 2004; Zhang & Luck, 2008). Two
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studies (Bays et al., 2011b; Fougnie & Alvarez, 2011)
independently of each other extended this paradigm
into a dual-report task, in which participants reported
two features of the cued item. In the experiments,
participants viewed an array of five or six colored,
oriented bars or triangles. After a brief retention
interval, they were cued with the location of one
of the sample items to report both its color and its
orientation. Using mixture models and classification of
response errors in single trials, both studies concluded
that failures to recall the two features occurred nearly
independently of each other.

This finding is in clear conflict with slot models,
which predict that whole objects with all their features
should be either remembered or not. However, the
results are also inconsistent with predictions of the
object file theory. To accurately recall either of the
two features (color and orientation) in this task, the
feature has to be bound to the stimulus location that
is used to indicate the target item. So, rather than a
combination of a few complete object representations
and additional unbound features as proposed by the
object file theory, working memory seems to contain
a collection of partially bound representations, with
colors and orientations of different objects encoded
with their associated location.

A range of findings from behavioral and imaging
studies indicate that location has a special role in
working memory and feature binding. Spatial memory
is very precise and object location is a particularly
effective cue for retrieving other visual features (Rajsic
et al., 2017; Schneegans & Bays, 2017). Object location
can be decoded from neural activity (Foster et al., 2017)
and attention is drawn to it when a memorized item is
cued (Kuo et al., 2009), even when location is entirely
task-irrelevant. Moreover, Treisman and Zhang (2006)
have shown that task-irrelevant location changes affect
performance and response biases when participants
have to detect changes in color-shape binding (see also
Logie et al., 2011), leading these authors to propose
that binding between nonspatial features is at least in
part mediated by location.

The role of location in feature binding was addressed
in another dual-report experiment (Schneegans & Bays,
2017, replicated and extended by Kovacs & Harris,
2019), in which participants again had to remember an
array of colored oriented bars. They were then cued
either with the color or the orientation of one sample
item, and had to report its location together with
the other nonspatial feature. Under these conditions,
strongly correlated response errors were observed. More
specifically, when participants erroneously reported the
location of a nontarget item, they tended to also report
the other feature of that spatially selected item, whereas
the response was indistinguishable from guessing when
compared with the feature of the true target item. This
phenomenon was observed even when the location

was reported after the other feature, demonstrating
that it was not the location report itself that drove this
behavior.

Schneegans and Bays (2017) used neural population
models with conjunctive coding of multiple features
(Matthey et al., 2015) to explain the observed
patterns of error correlations, and found that they
were well-captured by a model with separate feature
maps over visual space. In this model, the different
features can be retrieved from their respective map
independently of each other when cued with the target
item’s location. However, when cued with, for example,
the orientation of one item, the only way to retrieve
the associated color is to first determine the location
where the cue feature appears in the orientation map
and then use that to retrieve the color. When an error
occurs in the first step (e.g., a nontarget item with a
similar orientation as the target is selected because of
noise in encoding and decoding of features), then this
incorrect location will also be used to retrieve the color
value, yielding correlated response errors of the form
observed in the behavioral data.

Feature maps over visual space are well-established
in models of visual attention and visual search (Itti &
Koch, 2001; Hamker, 2004), but they are not widely
considered to be the substrate of visual working
memory. For instance, in Treisman’s feature integration
theory, it is assumed that the attentional selection of
an individual object is realized through activation of a
spatial region across different feature maps (Treisman
& Gelade, 1980; Treisman, 1988), but the object’s
features are then consolidated in the form of object files
(Kahneman et al., 1992; Wheeler & Treisman, 2002).

Indeed, there is some evidence that the special role of
location may only extend from perception to the earlier
stages of working memory. In the study of Treisman
and Zhang (2006), the effect of task-irrelevant location
changes was strongest when the retention interval
between sample and test array was short (0.1 s or 0.9
s), and was substantially diminished at longer intervals
of 3 s and 6 s. Similarly, a study by Logie et al. (2011)
found a substantial disruptive effect of task-irrelevant
location changes when retention intervals up to 1.5 s
were used, but the effect was no longer significant for
longer retention intervals. Moreover, this study found
that performance in the condition with random location
changes improved with longer retention intervals,
indicating that the mitigation of the disruptive effect is
strong enough to cancel out the expected decrease in
performance with longer delays.

The previous dual-report experiments used relatively
brief retention intervals of approximately 1 s. It is
therefore plausible that the binding mechanism that
was proposed based on these results only applies to
the early stages of visual working memory, and does
not capture behavior when items have to be memorized
over longer durations. Moreover, the findings of largely
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independent response errors when cued with location
versus correlated errors when cued with a nonspatial
feature were obtained in separate studies, using similar,
but not identical stimuli and procedures. That details
of the experiment design can make a substantial
difference is demonstrated by the study of Gajewski
and Brockmole (2006), in which participants viewed
an array of colored shapes and had to verbally report
the (categorical) color and shape of an item cued by its
location. Unlike the later dual-report experiments, the
study found high correlations between response errors
for the two features. It was later shown that this finding
could be attributed to the brief presentation time and
large eccentricity of stimuli in this study, which likely
incentivized participants to focus their attention on a
subset of stimuli (Peich et al., 2013).

The objective of the present study is two-fold: First,
we aim to replicate the findings of earlier dual-report
experiments for short retention intervals with both
location cues (Bays et al., 2011b; Fougnie & Alvarez,
2011) and nonspatial feature cues (Schneegans &
Bays, 2017), using matched stimulus displays and
response procedures. We will also apply the different
forms of analysis used by the previous studies to both
experimental conditions, namely, mixture model fits
to estimate error correlations and model comparison
between neural population models implementing
different forms of feature binding.

The second aim is to investigate whether the pattern
of error correlations changes with longer retention
intervals, which would indicate a change in the
underlying format of working memory representations.
To test this hypothesis, we interleave two different
retention intervals in each dual report task. The shorter
one matches the duration used in earlier dual report
tasks, whereas the latter was chosen to be in a range
for which change detection experiments observed a
substantially decreased effect of task-irrelevant location
changes. To preview our results, we found matching
patterns of error correlations in both delays, which were
consistent with those reported in earlier studies.

Experiment 1

Experiment 1 used a dual-report task in which
participants had to report the color and orientation
of a sample stimulus cued by its location. We aimed
to replicate the findings of Bays et al. (2011b) and
Fougnie and Alvarez (2011) regarding response error
correlations, and extend them to longer retention
intervals by using two different delay durations. We used
a stimulus display more similar to that of Schneegans
and Bays (2017), but with stimulus sizes intermediate
between that study and Bays et al. (2011b).

Methods

Participants
Twelve participants (five female, seven male, aged

18–30 years) completed the experiment after giving
informed consent in accordance with the declaration of
Helsinki. All participants showed normal color vision
and reported normal or corrected-to-normal visual
acuity. Participants were recruited via an online sign-up
system or by word of mouth, and were compensated
with £10 per hour for their time. All participants were
naive to the experimental hypothesis. The sample size
was chosen based on the previous studies, which had
found clear and consistent evidence for independent
response errors with sample sizes of 10 and 12,
respectively.

Apparatus
Stimuli were presented on a 27-inch LCD monitor

with a refresh rate of 120 Hz (Asus Swift PG279).
Participants were seated in front of the monitor at a
viewing distance of 60 cm, with their head position
stabilized by a forehead and chin rest. Participants’ gaze
direction was monitored using an infrared video-based
eye tracker (Eyelink 1000 Desktop System, SR
Research) operating at 1000 Hz. The experiment was
implement in Matlab using the Psychophysics Toolbox
(Brainard, 1997; Pelli, 1997; Kleiner et al., 2007) and
Eyelink Toolbox (Cornelissen et al., 2002) extensions.

Stimuli and procedure
The behavioral task is illustrated in Figure 1A.

Each trial began with the presentation of a white
fixation point with a radius of 0.25 degree of visual
angle (dva), shown at the center of the screen on a
black background. The fixation point remained visible
throughout the trial until the start of the response
phase, and participants were instructed to fixate it while
it was present. When stable fixation within a radius
of 3 dva was detected, the memory sample array was
presented for 2 s.

The sample array consisted of six colored, oriented
bars (2 dva × 0.5 dva), located on an invisible circle
around the screen center with a radius of 6 dva. Colors
were drawn from a color wheel in CIE L*a*b* color
space, centered at position (20, 20) in the ab-plane, with
a radius of 60 and a fixed luminance L = 50. Colors,
orientations, and locations of the sample bars were
drawn randomly for each trial, with the constraint that
color and location angles were separated by at least 20◦,
and orientations differed by at least 10◦ (given that the
space of unique bar orientations covers only 180◦, a 10◦
separation was chosen to match the 20◦ used for color
and location).
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Figure 1. Behavioral tasks with stimulus display and response screens for Experiment 1 (A) and Experiment 2 (B). Stimulus sizes and
distances are drawn to scale (except for screen boundaries). The white arrows in the rightmost panels show the possible adjustments
of the probe and were not part of the display.

The presentation of the sample array was followed by
a retention interval with a duration of either 1 s (short
delay condition) or 4 s (long delay condition). After this
delay, a location cue was shown in the form of a white
dot (radius 0.25 dva) at the location where one of the
sample items had appeared. Participants had to report
first the color, then the orientation of this cued item (in
the following referred to as the target item).

A color wheel with a radius of 9 dva appeared once
participants started moving the mouse (but no earlier
than 0.5 s after cue onset), randomly rotated for each
trial. As participants moved the mouse pointer over
the color wheel, the fixation point was replaced by a
central color probe, a disk with a diameter of 2 dva
whose color matched the current selection on the color
wheel. Participants made their response by clicking on
the color wheel. The color wheel then disappeared and
the central probe stimulus changed into a bar while
retaining the selected color. Participants rotated this
bar by moving the mouse to match the memorized
orientation of the target item, and confirmed their
response with another mouse click.

Participants completed 6 blocks of 36 trials each
(216 trial in total), with delay conditions randomly
interleaved and balanced within each block. If
participants’ gaze deviated more than 3 dva from the
fixation point during the sample or delay period, the
present trial was aborted and a new trial with the same
delay condition was added to the current block.

Analysis

Model-free analysis
In each trial, we determined the recall errors as the

angular deviations of each response from the respective

true target feature in circular space (in radians). All
orientation values were scaled up by a factor of two
to cover the same range [−π , π ) as color and location
angles. We determined the circular standard deviation
(SD) as defined by Fisher (1995) for each participant
and each report feature as a model-free measure of
recall performance, and used the Pearson correlation
coefficient between absolute response errors for the two
responses in each trial as a measure of error correlation.

We also determined the deviation of the response
from the features of all nontarget items in the same
trial to qualitatively evaluate the occurrence of swap
errors. Histograms of these nontarget deviations were
corrected for the effects of minimum feature separation,
by subtracting the expected response distribution
around nontargets in the absence of swap errors. The
expected response distribution was obtained using a
shuffling method, as described in (Schneegans et al.
2021; code available from https://bayslab.com/toolbox).
We used the same method to determine the mean
absolute deviation (MAD) of response values from
the feature values of nontarget items that would be
expected in the absence of swap errors. To test for the
presence of swap errors, we compared this expected
MAD with the actual MAD for each response and task
condition.

We adopted the method of Schneegans and
Bays (2017) to determine the effect of cue-feature
similarity on swap errors. We divided the range of
possible absolute distances between items’ feature
values within a trial (taking into account minimum
feature distance) into eight equal size bins, and
assigned each nontarget item to a bin based on its
feature distance to the target item in the cue feature
dimension (here, location). We then determined the
MAD of the response value from the report feature
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values of the nontarget items separately for each
bin.

For statistical comparisons, we used both standard
frequentist statistics and Bayesian statistics. For the
latter, we report the Bayes factor in favor of the
alternative hypothesis, BF10.

Mixture model fits
To investigate the binding mechanism in the

behavioral results, we employed both the joint mixture
model fits used by Bays et al. (2011b) and fits with the
neural binding model of Schneegans and Bays (2017) in
different configurations.

The two-component joint mixture model assumes
that responses for each feature are a mixture of target
responses, following a von Mises distribution with
concentration parameter κ centered on the true target
feature value, and uniform responses. Proportions of
trials are estimated for the four possible combinations
of the mixture components (αTT, αTU, αUT, and
αUU, where subscripts T and U indicate target or
uniform responses, respectively, for the first and second
response). This process yields five free parameters
(concentrations κcol and κloc for color and location, and
four mixture proportions that must sum to 1, making
one of them redundant). Parameters were estimated
separately for each participant by maximum likelihood
fits.

Following Bays et al. (2011b), we determine expected
mixture proportions for the case of completely
independent recall errors as[

αTT αTU
αUT αUU

]
=

[
αT•
αU•

]
· [

α•T α•U
]
, (1)

and for the case of perfectly correlated responses as

αTT  = (αT• +α•T)/2  (2) 
αUU = (αU• + α•U)/2 (3) 
αTU  = αUT = 0,  (4)

where variables of the form αT• indicate the proportion
of target or uniform responses in one feature report
irrespective of the other one.

The three-component joint mixture model (Bays
et al., 2009, 2011b) additionally takes into account
nontarget responses or swap errors, in which
participants report a feature that was present in the
trial’s sample array, but does not belong to the cued
target item (indicated by subscript N in the mixture
proportions). Nontarget responses are assumed to be
distributed around the true nontarget features following
a von Mises distribution with the same concentration
as in target responses. The three mixture components
for each response yield nine possible combinations
of response types. If a nontarget response occurs
for both color and location report, we can further

distinguish between matched swap errors, where the
same nontarget item is selected in both responses (with
proportion αNNs), and mismatched swap errors where
features of two different nontargets are reported (αNNd).
This process yields a total of 11 free parameters (two
concentration values and ten mixture proportions, one
of them redundant).

We also used the two- and three-component mixture
models for single features (Luck & Vogel, 1997; Bays
et al., 2009) to estimate for each trial the probability
each of the two responses was drawn either from the
target, nontarget, or uniform component, as described
in Schneegans and Bays (2016) (code available from
https://bayslab.com/toolbox).

Neural binding model fits
The neural binding model (Schneegans & Bays,

2017; Lugtmeijer et al., 2021) assumes that feature
conjunctions in the memory sample stimuli are encoded
in idealized conjunctive neural population codes, in
which the firing rate of each neuron is determined
by its preferred feature values and associated tuning
curves in two feature dimensions (e.g., color and
location; Figure 2A). The mean firing rate of neuron i
representing the cue feature value ψ j and report feature
value θ j of item j in the sample array is given by

ri, j (ψ j, θ j ) = γ

NM
φ◦(ψ j; ψ ′

i , κψ )φ◦(θ j; θ ′
i , κθ ) (5)

Here, γ is the mean total firing rate of the neural
population, which is normalized over the number
of items, N, and the number of neurons, M, that
contribute to the representation of each item. Neural
tuning curves are modeled as von Mises distributions,
φ◦, parameterized with the neuron’s preferred feature
values, ψ ′

i and θ ′
i , and concentration parameters, κψ

and κθ , for the two feature dimensions. Neural spiking
activity in the idealized population code is assumed to
be generated by independent Poisson processes based
on each neuron’s mean firing rate, yielding spike counts

ri, j ∼ Pois(ri, j ). (6)

At recall, the feature values of all sample items are
decoded through maximum likelihood estimation based
on the spiking activity during a fixed decoding interval.
The item whose decoded cue feature value is closest to
the presented cue is selected, and its decoded report
feature value is produced as a response. The derivation
of response probability distributions for the population
model as used here is described in detail in Lugtmeijer
et al. (2021).

We considered different model architectures for the
binding between the three feature dimensions in the
present experiment (location, color, and orientation).
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Figure 2. Neural binding model. (A) Encoding and decoding of a single color-location conjunction in neural activity. The conjunctive
population code is shown as color-coded activity distribution over the combined space of color hue values and angular locations. Each
point in this distribution reflects the combination of preferred feature values for one idealized neuron, and the color reflects the spike
rate of that neuron induced by the features of the sample stimulus (black arrows and white dashed lines). Activity is assumed to be
maintained over the delay interval, and recall is modeled as maximum likelihood decoding from neural spiking activity. Individual
spikes are generated from the spike rates via independent Poisson processes (illustrated as red stars indicating the preferred feature
values associated with each spike for an example decoding interval). Noise in the spiking activity introduces deviations of the decoded
feature values (red arrows and red dashed lines) from the actual sample features. (B) Architecture of the model variant with spatial
binding. Two separate neural populations encode color-location and orientation-location conjunctions, here shown representing
features of three sample stimuli. For the location cue task (blue arrows), the location cue is used to select and retrieve the associated
features independently from the two populations. For the orientation cue task (green arrows), the orientation cue is used to first
retrieve the associated location from one population code, and that location is then used as an intermediary cue to retrieve the
associated color.

In the spatial binding model (Figure 2B), we assume
that there are separate conjunctive population codes
for the association between each nonspatial feature
and its location, implementing the conceptual idea of
independent feature maps over visual space. The two
responses in each trial are then generated independently
from these two populations, such that the probability
of reporting a color θcol and orientation θori for a given
location cue θloc is determined as

p(θcol, θori|θloc) = p(θcol|θloc)p(θori|θloc). (7)

Two other model variants assume that there is
also an explicit population code representation of
color-orientation conjunctions. Using this in the present
experiment leads to indirect retrieval of one reported
features via the other one, but allows direct retrieval of
reported features from the cue in Experiment 2. The
binding via color model assumes that the orientation cue
is used to retrieve the item’s color based on the location
cue, and that color is then used as an intermediary cue
to retrieve the associated orientation:

p(θcol, θori|θloc) = p(θcol|θloc)p(θori|θcol) (8)

The binding-via-orientation model assumes that the
location cue is used to first retrieve the item’s orientation
(although it is reported second), and the color is then
retrieved based on the associated orientation:

p(θcol, θori|θloc) = p(θori|θloc)p(θcol|θori) (9)

All model variants have four free parameters, namely,
the overall spike rate γ and a tuning curve width for
each feature dimension. The spike rate and tuning curve
widths for matching features are shared across the
different conjunctive population codes in each model
variant. We obtained separate maximum likelihood fits
of the three model variants for each participant and
delay condition, and compared the quality of fit based
on their log-likelihood values. To compare model fits
with behavioral data, we simulated responses from the
best fitting model, using the same trials as in the actual
experiment repeated 100 times, and then applied the
same analyses that were used for the behavioral data.

We also compared the best-fitting neural binding
model to the two-component joint mixture model
using both Akaike information criterion (AIC) and
Bayesian information criterion (BIC) scores (because
the models differ in the number of free parameters).
The three-component joint mixture models performed
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worse in these scores for all conditions, and we do not
report individual comparisons.

Results

Model-free performance measures

Participants viewed an array of six colored, oriented
bars, and after a brief delay had to report first the
color, then the orientation of one sample item when
cued with its location. The duration of the retention
interval was varied within blocks of trials, lasting 1 s
in the short delay condition and 4 s in the long delay
condition. Distributions of response errors for the two
reported features and two delay conditions are shown in
Figures 3A and B. For both color and location report,
recall variability as measured by circular SD increased
significantly with longer delay duration (color: from
0.89 ± 0.31 [mean ± SD] for short delays to 1.13 ± 0.24
for long delays, t11 = 3.5, p = 0.005, BF10 = 10.5;
orientation: from 1.22 ± 0.27 to 1.58 ± 0.29, t11 = 10.4,
p < 0.001, BF10 = 30131).

There was a small, but statistically significant
positive correlation between absolute response errors
for the two features reported in each trial, both in the
short delay condition (Pearson correlation coefficient
r = 0.12 ± 0.08, t11 = 4.75, p < 0.001, BF10 = 62.0)
and the long delay condition (r = 0.12 ± 0.12,
t11 = 3.33, p = 0.007, BF10 = 8.2). The magnitude of
this correlation did not differ significantly between
delay conditions (t11 = 0.22, p = 0.83, BF10 = 0.29).

To detect the occurrence of swap errors, we plotted
the distribution of response deviations from the features
of nontarget items, with a correction to remove the
expected effects of minimum feature distance between
the items in each trial (Figures 3C and D). For the
color response, the histograms seem to show small
central peaks, especially in the long delay condition,
suggesting a clustering of responses around nontarget
features. A comparison between the MAD of response
values from nontarget features and the MAD expected
by chance in the absence of swap errors does indeed
show a significant difference in the long delay condition
(1.63 ± 0.04 vs expected 1.64 ± 0.02, t11 = 2.56,
p = 0.027, BF10 = 2.71), but not in the short delay
condition (1.68 ± 0.04 vs 1.68 ± 0.03, t11 = 0.62,
p = 0.55, BF10 = 0.34).

For the orientation response, the comparison of
observed and expected MAD values likewise showed
evidence for a clustering of responses around nontarget
feature values in the long delay condition (1.60 ± 0.03
vs 1.61 ± 0.02, t11 = 2.74, p = 0.019, BF10 = 3.52),
whereas the effect failed to reach significance in the
short delay condition (1.62 ± 0.04 vs 1.64 ± 0.02,
t11 = 2.02, p = 0.069, BF10 = 1.31). It should be noted
that in all cases the effect size was very small, and the

Bayesian t tests showed only relatively weak evidence
either in favor or against an effect.

Several previous publications have found that swap
errors are more likely to involve nontarget items whose
cue feature value is similar to the given cue (Emrich &
Ferber, 2012; Souza et al., 2014; Bays, 2016; Oberauer &
Lin, 2017). We tested this by grouping items according
to their spatial (angular) distance to the target item,
and determining the MAD of responses from the
report feature values (color and orientation) of the
items in each group (Figures 3E and F; Schneegans &
Bays, 2017). The occurrence of swap errors should be
reflected by a decrease of this MAD below the value
expected by chance. In the color response with short
delays, we found no evidence for this at any distance
(all p > 0.067, all BF10 < 1.32), but we found such
evidence in the first two distance bins for long delays
(first bin: t11 = 5.90, p < 0.001, BF10 = 282; second
bin: t11 = 2.71, p = 0.020, BF10 = 3.34). We also found
evidence for swap errors in the first distance bin for the
orientation response, both for short delays (t11 = 3.19,
p = 0.009, BF10 = 6.65) and long delays (t11 = 5.35,
p < 0.001, BF10 = 138). Taken together, these results
indicate that some swap errors did occur for both
reported features in this task, but their contribution to
overall response errors was quite limited.

Mixture model fits
We used mixture model fits to further elucidate

the pattern of response correlations. We fit color and
orientation responses in each delay condition with a
joint mixture model, which assumes that each response
is drawn either from a von Mises distribution centered
on the target feature or a uniform distribution. The
model fits yield estimates of the precision of target
responses for each feature, and of the proportions
of possible response combinations (target-target,
target-uniform, etc.). The circular SD of target
distributions (Figure 4A) was numerically higher in the
long delay condition compared with the short delay
condition for both features, but the difference was not
significant (color: t11 = 2.11, p = 0.058, BF10 = 1.48;
orientation: t11 = 1.42, p = 0.18, BF10 = 0.64).

The proportions of mixture components at short
delays (Figure 4B) show that mixed responses, with
one report attributed to recall of the target feature
but the other attributed to the uniform component,
were relatively frequent. In fact, the proportions closely
matched those expected for completely independent
color and orientation retrieval (white bars), and were
inconsistent with predictions from an object-based
account in which retrieval of the two features is fully
correlated (black bars).

In the long delay condition, estimated proportions
of target responses for each feature were reduced,
although the difference was only significant for the
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Figure 3. Distributions of response errors and effects of cue similarity in Experiment 1. Points with error bars show behavioral data
(mean ± 1 standard error), solid lines and shaded areas show fits from the neural binding model with spatial binding. (A) and (B)
Response errors (deviation of reported feature from true target feature) for color and orientation, respectively, shown separately for
the short delay condition (blue) and long delay condition (red). (C) and (D) Distribution of response deviations from the feature values
of nontarget items in the same trial. The distributions are corrected by subtracting the distributions that would be expected in the
absence of swap errors. (E) and (F) MAD of response values from the feature values of nontarget items in the same trial, binned by
difference in cue feature between nontarget and target item (with minimum feature distance shown by the shaded gray area). The
dashed line indicates the deviation expected by chance, lower values indicate the presence of swap errors. Stars indicate bins in which
the MAD is significantly lower than expected by chance (with thresholds 0.05, 0.01 and 0.001 for one, two or three stars, respectively).

orientation report (t11 = 3.10, p = 0.010, BF10 = 5.85;
color: t11 = 1.99, p = 0.072, BF10 = 1.26). The overall
pattern of estimated mixture proportions was similar
to the short delay condition, although there was a
modest shift toward more correlated responses. This
can be quantified by computing 	2, a measure of
correlation for binary variables, which varies between
0 (uncorrelated) and 1 (perfectly correlated). Although

the strength of correlation was relatively low in
both delay conditions (Figure 4D), it did increase
significantly from short to long delays (t11 = 3.91,
p = 0.002, BF10 = 18.9).

We additionally fit the data with a three-component
joint mixture model that also takes into account
swap errors. The overall results of this model fit were
consistent with those from the simpler model, and we
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Figure 4. Parameters obtained from joint mixture model fits of response errors in Experiment 1. (A) Circular SD of target components
(von Mises distributions) in the two-component joint mixture model fit for the two reported features and two delay conditions. (B)
and (C) Estimated proportions of mixture components in the two-component joint mixture model fits, applied separately to the two
delay conditions. Components are specified by two letters, T for target and U for uniform, for the response type in the first (color) and
second report (orientation). (D) Strength of correlation 	2 obtained from two-component joint mixture model fits. (E) and (F)
Estimated proportions of mixture components in the three-component joint mixture model fits. Only the components including
nontarget responses (swap errors) for either of the two features are shown shown, indicated by the letter N. NNd is the mixture
component in which two different nontargets items are selected in the two responses, and NNs the mixture component with
selection of the same nontarget item.

will focus here on the estimates of nontarget report
proportions. An object-based account predicts that if a
swap error occurs, the color and orientation of the same
nontarget object should be reported. The model fits
instead show a predominance of swap errors for only
one feature, or swap errors in which nontarget features
of two different objects are reported (Figures 4E and F).
The mixture proportions in the short delay condition
closely matched the pattern for independent memory
retrieval for color and orientation, but there was again
a modest shift toward more correlated responses in the
long delay condition, with a higher tendency to report
both features of the same nontarget item. Overall,
estimated swap frequencies were low across report
features and delays, consistent with the results of the
model-free analysis.

Finally, we used fits with a two-component mixture
model to classify each response as target or uniform
(Schneegans & Bays, 2016). Here, we used separate
fits for the two reported features to ensure that the
classification for one feature would not bias the
classification for the other. Figure 5 shows distributions
of response errors separately for those trials in which
the response in the other feature is classified as target

response, and when it is classified as coming from
a uniform distribution. For both features and delay
conditions, the distribution shows a clear peak even
when the response for the other feature was classified
as uniform (circular SD lower than expected for
uniform distribution, all p < 0.001, all BF10 > 43.6;
only including participants for which the classification
yielded both target and uniform trials, at least 7 out of
12). We did find, however, that the error distributions
were somewhat broader when the other response was
classified as coming from the uniform component,
with significant differences in circular SD for color
in the long delay condition (t6 = 5.83, p = 0.001,
BF10 = 37.4) and orientation in the short delay
condition (t11 = 3.27, p = 0.007, BF10 = 7.52).

Neural binding model
We fit the neural binding model (Schneegans & Bays,

2017) in different configurations to the behavioral data
to compare different possible mechanisms of binding
between the three visual features used in the task. The
spatial binding model that was favored in the previous
study assumes that color and orientation are each
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Figure 5. Distribution of response errors for each feature, conditional on the response classification in the other feature. Points with
error bars show results for behavioral data, and solid lines and shaded areas show results when the same analysis is applied to
simulated data from the neural binding model with spatial binding. (A) Distribution of color response errors in trials in which the
orientation response was classified as a target response using a two-component mixture model fit. (B) Distribution of color response
errors in trials in which the orientation response was classified as coming from the uniform component of the mixture model. (C, D)
Corresponding error distributions for the orientation response in trials in which the color response is classified as coming from the
target or uniform mixture component, respectively. For both features and delay conditions, the central peak is reduced, but still
present when the response in the other feature is classified as uniform. The reduction is not captured by the model fits.

bound directly and independently to stimulus location,
through conjunctive population codes that implement
separate feature maps over visual space. For the present
task, in which location was used as cue feature, this
model predicts that the two reported features should
be retrieved independently from the two features maps.
As alternatives, we considered two models in which the
color and orientation of each sample item are bound
directly to each other via a conjunctive population
code: In the binding via color model, the location cue is
first used to retrieve the target item’s color (the feature
reported first), and the reported color is then used as an
intermediary cue to retrieve the orientation, whereas
in the binding via orientation model, the location cue
is used to retrieve the orientation, and the reported
orientation is used to retrieve the color.

We obtained maximum likelihood fits of each of
these models, separately for each participant and
delay condition. We compared their quality of fit

based on the log likelihood, because all models have
the same number of free parameters. The results are
shown in Figures 6 A and B. The spatial binding
model performed better than the two alternatives,
providing the best fit for 11 of 12 participants in the
short delay condition and 10 of 12 in the long delay
condition, with substantially higher log-likelihood
values than the binding-via-color model (short delay:

LL = 14.9 ± 9.3; long delay: 
LL = 4.8 ± 5.8)
and the binding-via-orientation model (short delay:

LL = 53.1 ± 24.5; long delay: 
LL = 32.8 ± 19.3).
A single participant’s data were fit better by the
model variant with binding via color in both delay
conditions. However, this participant showed overall
poor orientation report performance (reflected by high
circular SDs in both delays) and negative correlations in
absolute response errors in the long delay condition, the
latter being inconsistent with an object-based binding
strategy.
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Figure 6. Model comparison between different variants of the neural binding model and estimated decoding precision for each
feature. (A) and (B) Difference in log-likelihood (
LL) between the model variant with spatial binding and two alternative variants.
Negative values indicate better fit for spatial binding, positive values better fit for the alternative. Colored points show differences for
individual participants, with colors for each participant fixed across conditions. Black diamonds with error bars shows mean ± 1
standard error. (C) Circular SD of the distribution of decoding errors obtained for each feature in the neural binding model with spatial
binding.

The spatial binding model also provided better overall
fits than the two-component joint mixture model (short
delay: 
BIC = 5.03 ± 6.57, 
AIC = 2.35 ± 6.57,
better fit for 10/12 and 8/12 participants, respectively;
long delay: 
BIC = 11.1 ± 6.59, 
AIC = 8.42 ± 6.59,
better fit for 12/12 and 7/12), indicating that the
proposed binding mechanism captures the behavioral
data better than the purely descriptive mixture
model.

Fits of the spatial binding model to the behavioral
data are shown in Figures 3 and 5. As can be seen, the
model accurately captures the distributions of response
errors and nontarget deviations, as well as the effects
of cue similarity on swap errors (Figure 3). The model
also qualitatively captures the conditional response
distributions in Figure 5 when the same mixture model
fit and response classification used for the behavioral
data is applied to simulated data from the model.
However, because the spatial binding model assumes
fully independent retrieval of the two features, it cannot
reproduce the slight change in response distributions of
one feature depending on the classification of the other
response.

The effects of delay condition are captured in the
model by an overall decrease in the precision with
which features can be decoded from the neural spiking
activity (Figure 6C; the decoding precision reflects the
tuning curve width for each feature in combination
with the global spike rate). The difference in the circular
SD of feature decoding was significant for orientation
(t11 = 9.74, p < 0.001, BF10 = 17261), but not for
location (t11 = 0.48, p = 0.64, BF10 = 0.32) or color
(t11 = 2.14, p = 0.056, BF10 = 1.53).

Discussion

The results in the short delay condition of the present
experiment closely replicate the findings of Bays et al.
(2011b), demonstrating that these findings are robust
to small changes in stimulus display and experimental
procedure. In particular, we closely reproduced the
estimated proportions of mixture components in the
extended mixture model for dual-report data, and
found a very similar strength of error correlations

Results of the model comparison with different
binding mechanisms implemented in neural populations
were consistent with this, favoring a model with direct
and independent binding of the two reported features
to the location cue over alternative mechanism
incorporating direct binding of color to orientation.
The spatial binding model captures the finding that
swap errors were overall relatively rare—consistent
with direct retrieval via the location feature, for which
memory is very precise—and that they occurred largely
independently for the two reported features. The
retrieval of color and orientation from separate feature
maps in the model furthermore accounts for nearly in-
dependent recall precision in the absence of swap errors,
as reflected by the estimated proportions of target and
uniform responses in the joint mixture model fits. There
was, however, a small degree of positive correlation in
the response errors for the two reported features that is
not explained by the neural population model.

In the long delay condition, we observed qualitatively
similar results in the mixture model fits as in the
short delay condition, with an expected decrease in
recall precision and proportion of target responses.
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However, we did observe a significant increase in error
correlations between the two responses, albeit on a
relatively low level. The neural model comparison also
still favored the model variant with independent binding
of color and orientation to space, but the advantage
over the alternative models was somewhat diminished.

The increase in correlations may indicate that there
is at least a partial change in memory format toward
a representation more consistent with object files,
containing all features of an object bound together.
However, a moderate level of response correlations and
an increase with longer delays might also be brought
about by factors that are not related to the mechanism
of feature binding. For instance, variations in global
levels of attention from trial to trial would be expected
to result in some correlations of response errors,
and may have a greater impact when items must be
maintained in memory over a longer delay period. We
return to the question of how to interpret these results
after the second experiment.

Experiment 2

In Experiment 2, participants had to report the color
and location of a sample stimulus when cued with its
orientation. This process closely follows one of the
task conditions in Experiment 2 of Schneegans and
Bays (2017), except that we used larger stimuli and a
different mode of response (mouse rather than response
dial). We chose a fixed order of responses with color
always reported first, because we consider this to be
the stronger test of the spatial binding hypothesis. We
combined this with the same two delay conditions as in
Experiment 1.

Methods

Twelve new participants (seven female, five male,
aged 20–28 years) completed the experiment after
giving informed consent. One additional participant
was tested, but excluded owing to poor performance
(distribution of location response errors not
significantly different from uniform as determined by
V-test; Fisher, 1995).

The apparatus, stimuli, and procedure were identical
to Experiment 1, except that the roles of orientation
and location in the task were swapped (Figure 1B).
After the presentation of the sample array and the
delay period, the central fixation point was replaced by
an orientation cue in the form of a white bar with the
same dimensions as the sample stimuli, matching the
orientation of one bar from the sample array (the target
item). Participants reported the color of the target item
by clicking on a color wheel as before, with the cue

stimulus also acting as color probe. The color wheel was
then replaced with a white dot (radius 0.25 dva) that
could be moved on the same invisible circle on which
the sample stimuli were located. Participants moved
this dot using the mouse to report the location of the
target item, and confirmed their response with another
mouse click.

We applied the same analysis to the data as in
Experiment 1. The only difference was that we used a
three-component mixture model to classify individual
location responses as target, swap or uniform responses.
For each trial, we determined the probabilities that
the response was based on the target location or each
individual nontarget location, or was drawn from a
uniform distribution, and classified the trial according
to which of these probabilities was highest. For swap
trials, this also produced an estimate of which nontarget
location was selected in the response.

In the neural binding model, the response
probabilities for the spatial binding variant in this task
are determined as

p(θcol, θloc|θori) = p(θcol|θloc)p(θloc|θori), (10)

with the location retrieved based on the orientation (and
reported in the second response) acting as intermediary
cue to retrieve the color. The binding-via-color variant
uses the color report as an intermediary cue,

p(θcol, θloc|θori) = p(θcol|θori)p(θloc|θcol), (11)

wheras the binding-via-orientation variant allows direct
and independent retrieval of both reported features
based on the cue,

p(θcol, θloc|θori) = p(θcol|θori)p(θloc|θori). (12)

Results

Model-free performance measures
The task in Experiment 2 was identical to that in

Experiment 1, except that participants now had to
report first the color, then the location of a sample item
cued by its orientation. Figures 7A and B show the
distributions of response errors for the two reported
features and two delay conditions. Circular SD
increased significantly from short to long delay duration
for both reported features (color: from 1.65 ± 0.22
to 2.01 ± 0.29, t11 = 3.36, p = 0.006, BF10 = 8.61;
location: from 1.39 ± 0.15 to 1.57 ± 0.21, t11 = 3.53,
p = 0.005, BF10 = 11.0). Absolute response errors for
the two features reported in each trial were significantly
correlated in both delay conditions (short delay:
r = 0.32 ± 0.12, t11 = 8.6, p < 0.001, BF10 = 5827;
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Figure 7. Distributions of response errors and effects of cue similarity in Experiment 2, with fits of the neural binding model with
spatial binding, shown in the same format as in Figure 3.

long delay: r = 0.24 ± 0.15, t11 = 5.05, p < 0.001,
BF10 = 93). Although there was a numerical decrease
in the level of correlation from short to long delays, the
difference was not significant (t11 = 2.02, p = 0.069,
BF10 = 1.30).

In both reported features, there was a clear
clustering of responses around the features of
nontarget items, indicating the presence of swap
errors (Figures 7C and D). The MAD of response
values from nontarget feature values was significantly
lower than would be expected by chance for both
features and delay conditions (all p ≤ 0.002, all
BF10 > 24.2).

There was evidence that swap errors occurred
specifically for nontarget items that had a similar
orientation as the target, in that the MAD of responses
from these nontarget features was lower than expected
by chance (Figures 7E and F; color, short delay:
p < 0.001, BF10 > 186 for first two bins; color, long
delay: p < 0.001, BF10 = 800 for first bin; location,
both delays: p < 0.001, BF10 > 18 for first three bins).

Mixture model fits
Figure 8 shows the results of fitting the two

responses in each trial with a two-component joint
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Figure 8. Parameters obtained from joint mixture model fits of response errors in Experiment 2, shown in the same format as in
Figure 4. Note that the scale of the y-axis in panels (E) and (F) is changed compared with Figure 4.

mixture model. There was no significant difference
in circular SD of target distributions between delay
conditions in either feature (Figure 8A; color:
t11 = 0.16, p = 0.88, BF10 = 0.29; location: t11 = 1.17,
p = 0.27, BF10 = 0.50). The proportion of target
responses decreased significantly from short to long
delay conditions for both the color report (t11 = 2.42,
p = 0.034, BF10 = 2.25) and the location report
(t11 = 3.20, p = 0.009, BF10 = 6.76).

The overall pattern of response types obtained from
the mixture model fit in this task (Figures 8B and C)
differs markedly from that in Experiment 1. In both
delay conditions, a large majority of trials show either
joint target responses or joint uniform responses for
the two reported features, with only a small proportion
of trials with mixed reports (predominantly spatial
target and color uniform responses). The pattern is
close to the prediction for fully correlated retrieval
of the two features from memory (black bars). This
finding is confirmed by the strength of correlation 	2

(Figure 8D), which reached substantially higher values
than in Experiment 1. The difference in 	2 between the
two delay conditions was not significant (t11 = 1.22,
p = 0.25, BF10 = 0.53). The fit with a three-component
joint mixture model shows a similar pattern (Figures 8E
and F). Swap errors occur predominantly in a
conjugated form, in which both feature of the same
nontarget item are reported. This qualitatively matches
the predictions of the fully correlated model.

To further illustrate the pattern of response
correlations, we used separate mixture model fits to
classify the responses in each feature. For the color

response, we used a two-component mixture model as
before. Because the location response is more precise
and location errors tend to be predominantly swap
errors (Rajsic & Wilson, 2014; Schneegans & Bays,
2017), we classify these responses using the three-
component mixture model, which allows us to estimate
which nontarget was selected in swap error trials. The
resulting distributions of color response errors show a
clear dichotomy between location-target and location-
swap trials in both delay conditions (Figures 9A and B).
Although the central peak for location-target trials is
larger than in the distribution over all trials (Figure 7A),
the distribution of color responses in location-swap
trials does not show a central peak at all (circular
SD not significantly lower than expected for uniform
distribution, all p > 0.41, BF10 < 0.39). Moreover, if
we plot the distribution of color response relative to
the color of the nontarget item at the selected location,
we see a clear central peak with the same shape as the
error distribution in location-target trials (Figure 9C;
no significant difference in circular SD for either delay
condition, all p > 0.09, BF10 < 1.06). This finding
demonstrates that, when participants make a swap error
in their location response, they will also report the color
of the spatially selected item, rather than the color of
true target item. This pattern of errors occurs despite
the fact that the location response is always made after
the color response.

In the distributions of location response errors
conditional on the classification of the color report
(Figures 9D and E), we likewise find a substantial
difference, with a larger central peak for color-target
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Figure 9. Distribution of response errors for each feature conditional on the response classification in the other feature in Experiment
2. Results are shown in the same format as in Figure 5, but here a three-component mixture model is used to classify location
responses. Distributions of color response errors are shown separately for trials with location response classified as coming from the
target component (A) or from the nontarget (swap error) component (B). In contrast with the results from Experiment 1, a central
peak is no longer detectable in the color response when the location response is classified as swap error. In addition, (C) shows the
deviation of the color response from the color of the chosen nontarget item in location swap trials. This panel shows a clearly peaked
distribution similar to (A), indicating that participants have a strong tendency to report the color of the spatially selected item
independent of whether this selection is correct.

trials and larger tails for color-uniform trials. However,
there is still a clear central peak in the color-uniform
trials, indicating that a correct location report can still
occur in trials with large error in the color response
(circular SD significantly lower than expected by
chance for both delay conditions, all p < 0.001,
BF10 > 80.0).

Neural binding model

We fit the same variants of the neural binding model
to the data as in Experiment 1. However, because
the roles of the different stimulus features are now
changed, the same models make different predictions.
The spatial binding model, in which only color-location
and orientation-location conjunctions are explicitly
represented, predicts that participants will use the
orientation cue to first retrieve the target location, and
then use the decoded location as intermediary cue
to retrieve the color. The model variant with direct
binding of color and location to orientation would

predict independent response errors in the current task,
whereas the variant with direct binding of the other
features to color predicts correlated errors mediated via
the first response.

As expected based on the qualitative results from
the mixture model fits, the spatial binding model fit
the behavioral data best (Figures 10A and B). It was
preferred for 11 (short delay) or 10 (long delay) of
12 participants, respectively, with large difference in
log-likelihood relative to the variant with direct binding
to the orientation cue (short delay: 
LL = 23.1 ± 20.7;
long delay: 
LL = 14.3 ± 15.2) or with binding via
color (short delay: 
LL = 23.1 ± 11.8; long delay:

LL = 16.9 ± 8.51). One participant’s data were better
fit in both delay conditions by the model variant with
direct binding of report features to the orientation cue,
but differences in log-likelihood between model fits were
small for this participant.

The neural model with spatial binding also captures
the data substantially better than the two-component
joint mixture model, further supporting this specific
binding mechanism (short delay: 
BIC = 103 ± 43.9,
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Figure 10. (A–C) Model comparison between different variants of the neural binding model and estimated decoding precision for each
feature in Experiment 2, shown in the same format as in Figure 6. (D–F) Estimated mixture proportions and correlation strengths for
the two-component joint mixture model applied to simulated data from the neural binding model with spatial binding, compared to
estimates for behavioral data.


AIC = 101 ± 43.9; long delay: 
BIC = 76.3 ± 36.5,

AIC = 73.7 ± 36.5; better fit for all participants in
both conditions).

The model provides good fits to the response error
distributions (Figures 7A – D), although it deviates
slightly from the behavioral data in that it produces
less peaked distributions for the color report, and more
peaked ones for the location report. This finding can
likely be attributed to the simplifying assumption in
the model that the location response accurately reflects
the decoded location that is used as intermediary cue
to retrieve the color. It is plausible that the precision
of the reported location is somewhat degraded, owing
to the additional delay and possible interference from
the color report (which is made by selecting a location
on a color wheel). This process would result in the
actual location response to be less precise, but the color
response to be more precise than predicted in the model
(because the color response is based on a more accurate
location estimate and therefore contains fewer swap
errors).

The neural model with spatial binding accurately
captures the conditional error histograms in Figure 9.
Because an item’s color can only be retrieved via the
item’s location in this model, a swap error in location
will typically be accompanied by a corresponding swap
error in the color report (Figures 9A to C). However,

errors can still occur in the color retrieval, even when
the location of the correct item was selected, such that
large color errors are not necessary associated with
an incorrect location report (Figures 9D to E). When
we apply the fit with a joint two-component mixture
to simulated data from the neural binding model, we
find that it closely reproduces the estimated mixture
proportions as well as the 	2 values obtained for the
behavioral data (Figures 10D to F).

The effects of delay duration are captured in the
model by an increased variability in decoding individual
features from the neural spiking activity (Figure 10C),
with significant increases in circular SD for color
(t11 = 4.14, p = 0.002, BF10 = 26.2) and orientation
(t11 = 8.37, p < 0.001, BF10 = 4616), but no significant
difference for location decoding (t11 = 1.22, p = 0.25,
BF10 = 0.53).

Discussion

The results in both delay conditions of Experiment
2 match those of Schneegans and Bays (2017), and in
particular replicate the key qualitative finding of that
study: When participants make a swap error in the
spatial report, they will typically also report the color
of the spatially selected item, with no evidence that
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they are capable of retrieving the correct target color
without the target item’s location. This occurs in the
present study despite the fact that location was always
reported after color, so participants had no incentive to
use location as an intermediary cue.

The mixture model analysis produced consistent
results, with substantially higher correlations in
response errors than in Experiment 1. We note that this
qualitative finding is also compatible with object-based
memory representations, which would likewise predict
correlated response errors. However, fits of the
neural population model with binding via space also
quantitatively account for the specific proportions of
mixture model components estimated for the behavioral
data, providing support for this specific binding
mechanism.

General discussion

In two experiments with matched stimuli and
procedures, we successfully replicated previous findings
from different dual-report delayed reproduction tasks
(Bays et al., 2011b; Fougnie & Alvarez, 2011; Fougnie
et al., 2013; Schneegans & Bays, 2017; Kovacs & Harris,
2019), and obtained consistent results across different
methods of analysis employed in previous studies. This
confirms that the different patterns of error correlations
observed when using either location or a nonspatial
feature as a cue to indicate the target item are indeed a
result of the cueing condition, and cannot be attributed
to other differences in stimulus display or procedure
between the previous studies.

We did not observe any qualitative changes in the
pattern of error correlations when we substantially
increased the duration of the retention interval,
indicating that there was no overall change in the
format of working memory, as had been suggested in
previous studies using change detection tasks (Treisman
& Zhang, 2006; Logie et al., 2011). The correlation
patterns were well explained by a neural model in which
nonspatial features of an object are bound to each other
only indirectly via their shared location in visual space
(Schneegans et al., 2016; Schneegans & Bays, 2017).

The neural binding model used here is based on the
general assumption that conjunctions of features are
encoded in the spiking activity of neural populations,
and that recall errors arise from noise in the neural
activity. Themodel combines aspects of resourcemodels
(with a fixed total spike rate in the neural population
limiting capacity) and the slots-plus-averaging model
(with individual spikes acting as discrete samples that
are averaged when retrieving a feature; Schneegans et
al., 2020). In explaining recall errors as an effect of
noise in memory representations, it is also related to
the recently proposed target confusability competition

model (Schurgin et al., 2020), which has been shown to
closely correspond with a specific formulation of the
neural population model (Bays, 2019). However, the
neural binding model considers noise not only in the
feature to be reported, but also in the cue feature used
to indicate which item is the target, and explains swap
errors and imprecision of responses as a result of the
same memory variability. In this regard, it is similar in
turn to the interference model of Oberauer and Lin
(2017).

In the present experiment, the implementation of
the neural binding model with purely spatial binding
was preferred for a large majority of participants
across experiments and delay conditions, and only few
individual participants showed patterns of response
errors that were better captured by different binding
mechanisms. It is plausible that these cases were merely
the result of noise in the behavioral data, although
we acknowledge that the relatively small sample size
used here does not allow us to reliably assess individual
differences in feature binding. Another recent study
using a dual-report paradigm did observe some
flexibility in the binding mechanism (Schneegans et
al., in press). In particular, it found that presentation
time could take over the role of space in mediating
binding between other features when sample items were
presented sequentially at the same location, and that
a mix of binding strategies may be used when stimuli
are separated both in time and space (see also Heuer &
Rolfs, 2021). However, this study likewise did not find
any evidence for object-based representations as basis
for feature binding, supporting the view that binding
via space is the default mechanism when memorizing
simultaneously displayed sample arrays.

One deviation in the behavioral data from the
predictions of the spatial binding model was that
recall errors when using a location cue were not
entirely independent, but showed a low level of positive
correlations, and this correlation was increased in
the long delay condition. This observation would be
consistent with at least a quantitative change in visual
working memory toward a representational format
such as slots or object files, in which all features of
an item are inherently bound to each other without a
special role of location. However, the orientation cue
task in Experiment 2 showed no evidence for a reduced
role of location in mediating binding between other
features.

We therefore believe that these correlations are more
likely to be the result various factors that are not
directly linked to the binding mechanism, and which
are not taken into account in the neural binding model.
One of these is trial-to-trial variations in vigilance,
that is, the level of attention to the task. Lapses of
attention have been proposed as a cause for large
recall errors in conditions with low memory demand
(Zhang & Luck, 2008), and recent work has shown
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that trial-to-trial variations in attention affect working
memory performance (deBettencourt et al., 2019). In
the present task, lapses in attention would be expected
to cause errors in both responses within a trial, leading
to the observed correlations. It has furthermore been
proposed that fluctuations in attention specifically affect
the successful maintenance of memory items over long
delay periods (Hakim et al., 2020), which would explain
the observed increase in error correlations (together
with an overall increase in the estimated proportion
of uniform responses) in the long delay condition of
Experiment 1.

In addition, different levels of spatial attention
to individual items within a trial would also induce
error correlations without object-based memory
representations. It is well established that participants
can prioritize individual items in a trial, either due to
stimulus properties (Bays & Husain, 2008; Rajsic et al.,
2016) or an explicit incentive to do so (Bays et al., 2011a;
Gorgoraptis et al., 2011). The neural binding model as
used here assumes that resources are always distributed
evenly across items, and variability in recall precision is
purely due to stochastic processes (Schneegans et al.,
2020), but this is likely an over-simplification.

Correlations owing to differences in attention could
be reinforced over the retention interval through
rehearsal, in particular if rehearsal makes use of similar
space- or object-based attentional processes in working
memory as in perception (Kong & Fougnie, 2019;
Grieben et al., 2020). This would result in increasing
correlations in memory strength between memorized
features of different items, even if these features are held
in independent stores (such as separate feature maps).

Finally, verbal (re-)coding of stimuli (e.g., blue
horizontal bar) may contribute to memory performance
and may create a form of bound object representation
outside of visual memory stores. Fougnie and
Alvarez (2011) used articulatory suppression in their
experiments and obtained very similar qualitative
results as Bays et al. (2011b) and the present study.
However, the additional time available in the long delay
condition may increase the use of verbal coding and its
impact on recall errors.

A recent study by Sone et al. (2021), using a
dual-report task with location cues, sought to determine
whether the sequential report of different features
affected the outcome, and tested a task variant with
simultaneous report of colors and orientations in
a combined response display. The study assessed
correlations by grouping trials according to absolute
response error in one feature, and measuring how
closely the responses in the other feature was
concentrated around the correct target value. This
method yielded clear evidence for error correlations
between the two features both for sequential and
simultaneous reports, with the latter revealing stronger
correlations than the former. The authors interpreted

this as evidence for object-based representations in
memory.

We applied the same analysis to the present results,
and found that correlations in the present Experiment 1
(Supplementary Figure S1) were noticeably lower than
those observed by Sone et al. with the same set size and
delay, both for simultaneous and sequential report.
However, we found substantially higher correlations
than this previous study in the present Experiment 2
(Supplementary Figure S2). In particular, for those
trials with the highest location errors, color report
performance was at chance levels (consistent with
our model-based analysis). In contrast, performance
was still substantially above chance levels for all trial
bins in the results of Sone et al., suggesting that what
they observed was an intermediate level of correlation
not consistent with the form of object-based,
all-or-nothing memory representations proposed by slot
models.

A possible basis for the discrepant results between
our Experiment 1 and the findings of Sone et al.
(2021) lies in the various differences in stimuli and
procedure between the two studies, such as the shorter
sample presentation time of 0.5 s in the previous
study compared to 2 s in the present experiments. We
note that recall performance in the closest matching
condition of Sone et al. (2021) was overall lower than in
the present Experiment 1 (Supplementary Figure S1 vs.
Figure 7 from Sone et al.). Greater task difficulty may
incentivize participants to focus attention on a subset
of items, as has been suggested for a previous study
finding high error correlations (Gajewski & Brockmole,
2006; Peich et al., 2013).

Sone et al. (2021) further aimed to distinguish
object-based representations from location-based
binding of features, using sample arrays with pairs of
colored, oriented triangles of different sizes centered at
the same location (with the smaller triangles completely
within the boundaries of the larger ones). Performance
was better when participants had to remember two
features of the same triangles (either the smaller or
the larger ones) than when they had to memorize, for
example, the colors of the larger and the orientations
of the smaller triangles, and performance in the
latter condition was not significantly different from a
condition in which the features of all items had to be
memorized. Based on this, the authors concluded that
working memory stores whole objects, with no special
role for location.

One limitation of this experiment is that it does
not distinguish object-based effects in perception and
memory. Because the stimuli are still presented quite
briefly (0.5 s), it is plausible that the encoding stage
is the limiting factor for performance in this task.
Moreover, although the stimuli in the task are centered
at the same point, participants are still likely to focus
their attention on different parts of the display when

Downloaded from jov.arvojournals.org on 11/17/2021



Journal of Vision (2021) 21(12):7, 1–21 Brown, Kasem, Bays, & Schneegans 19

they try to memorize the different-sized stimuli. It is
true, however, that fully overlapping stimuli—which
occur, for instance, when they are presented sequentially
at the same location—are a challenge for models relying
exclusively on binding via space. The recent study of
Schneegans et al. (in press) has shown that in such
cases, presentation time or temporal order rather than
location can mediate binding between other features.

We further note that one of the change detection
studies that motivated the present work (Logie et al.,
2011) also observed disruptive effects on performance
when a nonspatial feature (color or shape) was changed
while it was task-irrelevant, but these effects only
occurred at shorter delays (0 s or 0.5 s) than they did
for location changes. Results from a subsequent study
indicate that these effects are driven by a visual transient
signal that occurs in the absence of a delay and extends
to very short delay periods, but can be eliminated by
introducing a visual pattern mask (Bocincova et al.,
2017).

We have not attempted in the present study to
explicitly model the causes of decreasing performance
with longer retention intervals. A previous study
extended the original neural population model (Bays,
2014) to implement different mechanisms of memory
deterioration over time (Schneegans & Bays, 2018) and
found support for random drift in population activity
as the likely mechanism. Here, we confined ourselves
to assessing the effects of delay duration with separate
model fits for the different task conditions. The model
fits show that delay effects in the present study can be
explained by an overall increase in the variability of
decoded feature values. This finding is consistent with
the drift hypothesis, but also compatible with other
mechanisms (e.g. Barrouillet et al., 2007).

One limitation of the dual-report paradigm is that
it can only elucidate binding mechanisms between
features that participants are instructed to memorize
for later report. In particular, location was always
a task-relevant feature, in contrast with the change
detection tasks for color-shape binding used in previous
studies (Treisman & Zhang, 2006; Logie et al., 2011).
Therefore, we cannot rule out that participants in
these tasks use specific strategies that decrease the
disruptive effects of location changes. These may
include approaches alluded to before, such as verbal
coding or focussing attention on a subset of items, but
also changes in memory representations that are yet to
be specified.

However, we believe the current results demonstrate
that there is no automatic change in the format of
working memory representations with longer retention
intervals. The continuity in the observed patterns of
error correlations across delay conditions shows that
there is merely a gradual decrease in performance, but
no qualitative change in the mechanism of feature
binding. A neural architecture with separate feature

maps over visual space therefore not only captures
visual processing during perception and early stages
of memory, but offers a viable explanation for the
organization of visual working memory in general.

Keywords: visual working memory, feature binding,
swap errors, neural population model
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