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A B S T R A C T   

Visual memory for objects involves the integration, or binding, of individual features into a coherent repre-
sentation. We used a novel approach to assess feature binding, using a delayed-reproduction task in combination 
with computational modeling and lesion analysis. We assessed stroke patients and neurotypical controls on a 
visual working memory task in which spatial arrays of colored disks were presented. After a brief delay, par-
ticipants either had to report the color of one disk cued by its location or the location of one disk cued by its 
color. Our results demonstrate that, in the controls, report imprecision and swap errors (non-target reports) can 
be explained by a single source of variability. Stroke patients showed an overall decrease in memory precision for 
both color and location, with only limited evidence for deviations from the predicted relationship between report 
precision and swap errors. These deviations were primarily deficits in reporting items rather than selecting items 
based on the cue. Atlas-based lesion-symptom mapping showed that selection and reporting deficits, precision in 
reporting color, and precision in reporting location were associated with different lesion profiles. Deficits in 
binding are associated with lesions in the left somatosensory cortex, deficits in the precision of reporting color 
with bilateral fronto-parietal regions, and no anatomical substrates were identified for precision in reporting 
location. Our results converge with previous reports that working memory representations are widely distributed 
in the brain and can be found across sensory, parietal, temporal, and prefrontal cortices. Stroke patients 
demonstrate mostly subtle impairments in visual working memory, perhaps because representations from 
different areas in the brain can partly compensate for impaired encoding in lesioned areas. These findings 
contribute to understanding of the relation between memorizing features and their bound representations.   

1. Introduction 

Visual deficits are common following stroke and vary widely, from 
reduced acuity and visual field loss, to visual inattention and deficits in 
perceiving specific features (Beaudoin et al., 2013; Rowe et al., 2017). 
Visual perception is also the basis for visual working memory, the 
retention of visually perceived features and objects over a short period of 

time that is required for many everyday tasks and important for subse-
quent episodic memory formation. In this study, we investigated 
whether stroke affects visual working memory in cases where perception 
is spared. Moreover, we examined whether stroke can result in specific 
impairments of feature binding in working memory, that is, the ability to 
memorize which visual features belong to the same object. 

Various previous studies have investigated the effects of ageing and 
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neurological conditions on feature binding in working memory. While 
some early work suggested that binding memory is selectively impaired 
in healthy ageing (Cowan, Naveh-Benjamin, Kilb, & Saults, 2006; 
Mitchell, Johnson, Raye, Mather, & D’Esposito, 2000), several more 
recent studies have consistently concluded that there is a general decline 
of working memory performance in older adults, but no specific 
impairment for feature-feature or feature-location binding (Brockmole, 
Parra, Della Sala, & Logie, 2008; Pertzov, Heider, Liang, & Husain, 
2015; Rhodes, Parra, & Logie, 2016). In contrast, there is strong evi-
dence that working memory for binding (object-location and object- 
color) compared to memory for individual features is selectively 
impaired in Alzheimer’s disease, but not in other forms of dementia 
(Della Sala, Parra, Fabi, Luzzi, & Abrahams, 2012; Liang et al., 2016, 
Parra et al., 2015). Impairments in object-location binding have also 
been observed in patients with temporal lobe damage following a form 
of autoimmune encephalitis (Pertzov et al., 2013). 

By studying feature binding in a stroke population we can get 
additional insight into brain regions necessary for feature recall and 
binding in visual working memory. Unlike Alzheimer’s disease and en-
cephalitis, stroke has a sudden impact on the brain with lesions that can 
be identified with respect to site and size, which makes the etiology 
more suited to make inferences on neural correlates of deficits (De Haan 
& Karnath, 2018). Stroke may result in focal lesions on the one hand, but 
on the other hand also in wide-spread disruptions of network activation 
(Adhikari et al., 2017). Consequently, we expected to find specific im-
pairments in visual working memory as a consequence to a lesion in a 
key region, in addition to stroke patients as a group differing from 
stroke-free controls. Lesion-behavior mapping was used to identify these 
regions. 

In the present study, we assess visual working memory performance 
for color, location, and the binding of colors to locations (a form of 
extrinsic intra-item binding; cf. Piekema, Rijpkema, Fernández, & Kes-
sels, 2010) in stroke patients and age-matched controls. We employ a 
novel approach that combines behavioral testing in two delayed 
reproduction tasks with computational modeling. This approach makes 
use of recent findings on feature binding in healthy participants to 
measure both memory precision for individual features and to detect 
specific impairments in feature binding. 

In the delayed reproduction task, participants briefly view a visual 
array of sample stimuli, and after a short delay interval have to report a 
feature of a cued item on a continuous scale (e.g. by adjusting the color 
of a probe to match the sample item at a cued location; Wilken & Ma, 
2004). This type of task allows us to distinguish different types of recall 
errors. The dispersal of reported features around the true value of the 
cued target item yields a sensitive measure of memory precision for 
individual features. Failures to retrieve the binding between features are 
typically associated with swap errors, in which participants report the 
feature of a sample item other than the target (Bays, Catalao, & Husain, 
2009). Importantly, however, an elevated proportion of swap errors 
does not necessarily demonstrate a specific deficit in binding memory, 
but may also reflect an impairment in memory for the cue features that 
are used to indicate which item is the target (Pertzov et al., 2015). 

Indeed, several studies have found that swap errors occur more 
frequently if memory for the cue feature is less precise (e.g. using color 
cues instead of location cues; Rajsic & Wilson, 2014), and that swap 
errors are more likely across items that are similar in their cue feature 
(Bays, 2016; Emrich & Ferber, 2012; Rerko, Oberauer, & Lin, 2014). 
Two recent computational models have incorporated imprecision in 
memory for the cue feature as a key cause of swap errors, and have 
successfully accounted for the specific patterns of swap errors in various 
delayed reproduction tasks (Oberauer & Lin, 2017; Schneegans & Bays, 
2017). 

Here, we employ the neural binding model of Schneegans and Bays 
(2017) as an analytical tool to assess memory for feature binding. It is 
based on a population coding account that has recently been shown to 
perform equal or better in fitting behavioral data than competing models 

of visual working memory (Schneegans, Taylor, & Bays, 2020) while 
also being firmly grounded in neural principles. The model proposes that 
each item’s cue and report features are jointly represented in a neural 
population code, and it explains recall errors as a result of decoding from 
noisy neural activity. Imprecision in recall arises from variability in 
decoding the reported feature, and swap errors arise from decoding 
variability in the cue feature. 

One key property of the neural binding model is that it makes pre-
dictions across task conditions. If the roles of cue and report feature are 
swapped, the same decoding variability that was previously causing 
recall imprecision should now be reflected in the frequency of swap 
errors, and vice versa. In the present study, participants either had to 
report the color of an item cued by its location, or its location when cued 
with its color. We validated the predictions of the neural binding model 
in the control group, and then used model fits to detect deviations from 
the predicted relationship between recall precision and swap errors in 
the patient group. Such deviations served as a measure of specific im-
pairments either in binding or feature recall. 

2. Materials and methods 

2.1. Participants 

Eighty-eight patients from the Functional Architecture of the Brain 
for Vision (FAB4V) study, a multi-centre prospective cohort study on 
vision and cognition after ischemic stroke in adults, participated in this 
study. The Medical Review Ethics Committee Utrecht approved the 
study (30-06-2015), and written informed consent according to the 
Declaration of Helsinki, was obtained from all participants prior to 
participation. Exclusion criteria were: haemorrhagic stroke, cerebral 
venous sinus thrombosis, pre-existing cognitive decline (score ≥ 3.6 on 
the Dutch version of the Informant Questionnaire on Cognitive Decline 
in the Elderly [IQCODE], filled in based on functioning before the stroke; 
Schmand, Ooms, & Ribbe, 1997) or dementia, psychiatric disorder, se-
vere aphasia, pre-existing visual impairment, and disrupted perception 
as a consequence of stroke, like hemianopsia. Cognitive measurements 
took place between April 2016 and March 2020. Patients were at least 4 
weeks post-stroke, 46 patients were assessed on visual working memory 
in the subacute stage within 6 months, 42 in the chronic stage between 6 
months and 3 years after stroke (range in days 29–1,055, median 106 
days). All patients underwent an MRI scan within 6 months post-stroke 
(range in days 17–186, median 52 days). Based on the Bells test 
(Gauthier, Dehaut, & Joanette, 1989) none of the patients had neglect. 
Five patients were excluded from analyses because of missing data due 
to technical or logistic reasons (N = 3) and fatigue (N = 2), resulting in a 
total sample size of 83 patients (Mage (SD) = 63 (11); m:f = 61:22; 
Meducation [range] = 5.3 [2–7]). 

A stroke-free control group (N = 88), matched for age, was recruited, 
without a history of neurological disease or cognitive decline (self- 
report). Thirteen controls were excluded because of incomplete data (all 
due to technical or logistic reasons) resulting in a control group of 75 
subjects (Mage (SD) = 60 (11); m:f = 38:37; Meducation [range] = 5.9 
[4–7]). Controls were recruited via social networks or were spouses or 
family members of patients. 

All participants had normal or corrected-to-normal visual acuity, and 
none reported color blindness. 

2.2. Paradigm 

Participants performed a delayed reproduction task that assesses 
memory precision for color and location and for binding between those 
features (adapted from Schneegans & Bays, 2017, experiment 1). In one 
condition a location cue was given and participants were instructed to 
report the corresponding color, in the other condition a color cue was 
given and the location needed to be reported (Fig. 1). At the beginning of 
each trial a white fixation cross (diameter 0.75◦ of visual angle) was 
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presented for 2 s. This was followed by a sample array showing three 
colored discs (0.5◦ radius) positioned on an imaginary circle (6◦ radius), 
cantered on the fixation cross. Locations were randomly selected for 
every trial with a minimum distance of 30◦ to neighbors. Colors were 
chosen at random from a color wheel, defined as a circle in Commission 
Internationale de l’Eclairage (CIE) L*a*b* coordinates with constant 
luminance (L* = 50), center at a* = b* = 20, and radius 60. Colors for 
the different discs were separated at least 30◦ on the color wheel. After a 
presentation duration of 2 s, a black display with fixation cross was 
presented for 1 s followed by a cue. One of the three discs from the 
sample array was selected as the target. In the report-color condition, a 
white disc (0.25◦ radius) appeared at the location of the target item. 
Participants adjusted the color of a centrally presented disc (0.75◦

radius) by cycling through the color wheel until the color matched the 
recalled color of the target. In the report-location condition, the cue was a 
centrally presented disc that matched the color of the target. Partici-
pants adjusted the location of a white disc (0.25◦ radius) on the imagi-
nary circle to match the target’s recalled location. Participants 
responded using an input dial (PowerMate USB Multimedia Controller, 
Griffin Technology) and were instructed to answer precisely rather than 
fast. All participants were capable of operating the input dial without 
aid. Participant performed one block of 40 trials per task condition, each 
preceded by six single item practice trials. The order of the blocks was 
counterbalanced across participants. 

2.3. Behavioral data processing 

Stimulus locations and colors were analyzed and are reported with 
respect to the circular feature space of possible values, -π to π radians. 
Recall error was calculated as the distance in radians between the re-
ported value and the true feature value of the target item. Deviation 
between the response and feature values of non-target items in each trial 
was calculated to assess evidence for swap errors (erroneous report of 
the feature of a non-target item). Histogram plots of non-target de-
viations were corrected for the effects of minimum feature distance 
between items within a trial (Schneegans & Bays, 2017; see S1 for 
details). 

2.4. Neural binding model 

The neural binding model (Schneegans & Bays, 2017) extends a 
neural population model of working memory (Bays, 2014) to explain 

patterns of swap errors in delayed reproduction tasks. It assumes that the 
features of all sample items are encoded in the spiking activity of an 
idealized population of neurons with conjunctive coding (Fig. 2A). Each 
neuron’s mean activity is determined by its tuning functions for both 
stimulus color and stimulus location, modelled as von Mises distribu-
tions with different concentrations for the two features. 

Spiking activity for each neuron is generated by an independent 
Poisson process. 

When a cue is presented in the delayed reproduction task, the feature 
values of all sample items are decoded from the noisy spiking activity by 
maximum likelihood estimation. The item whose decoded cue feature 
value is closest to the given cue is selected, and its decoded report 
feature value is generated as a response. Variability in decoding leads 
both to imprecision in the reported value and to swap errors (Fig. 2B), 
which occur when the decoded cue feature value of a non-target item is 
closer to the given cue than the decoded cue feature value of the actual 
target (see S2 for full model description and derivation of response 
distributions). 

The model has three free parameters. The widths of the tuning curves 
for color and for location determine the decoding precision in each 
feature dimension (with sharper tuning curves leading to lower decod-
ing errors, as illustrated in Fig. 2A). The gain parameter determines the 
mean spike rate, which globally scales decoding precision and controls 
variability of precision across trials. 

We obtained separate model fits for each participant’s data in the 
two task conditions, as well as a combined fit across task conditions for 
each participant. In the latter fit, the same neural population underlies 
both color and location report, the only difference being which feature is 
used as cue and which is reported. This model makes predictions about 
the relationship between error distributions in the two tasks (Fig. 2C, left 
column). Concretely, the distribution of decoding errors for color (re-
flected by the red solid line in Fig. 2A) directly matches the distribution 
of response errors around the selected item in the report-color condition 
(width of the peak in Fig. 2C, top left). The same distribution of decoding 
errors determines the likelihood of a specific non-target item being 
selected for response generation in the report-location condition, 
dependent on how similar that non-target is to the target in color 
(Fig. 2B). A broader distribution of decoding errors leads to more swap 
errors, which are reflected by a central peak in the distribution of 
response deviations from non-targets (Fig. 2C, bottom left). The same is 
true analogously for location, which typically shows a narrower distri-
bution of response errors and fewer swap errors. The combined fit of the 

Fig. 1. Delayed reproduction task with two conditions. The sample array consists of three disks with randomly chosen colors and locations on an imaginary circle 
around the fixation point. In the report-color condition a location is cued and participants use a response dial to report the matching color. In the report-location 
condition a color cue is given and participants use the dial to adjust a small white disk to the matching location. 
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model to both task conditions takes all forms of errors into account to 
estimate the decoding precision for color and location that best explain a 
participant’s response errors in each single trial. 

2.5. Extended neural binding model 

We extended the neural binding model to detect specific deviations 
from the predicted relationship between report precision and swap er-
rors. We allow for the possibility that only a certain proportion of all 
available spikes contribute to the selection of the presumed target item 
(with others only contributing to the decoding of the report feature 
value), leading to a selective impairment in selecting the target item 
based on the given cue. We also allow for the converse effect, in which 
all spikes contribute to the selection of the cued item, but only a subset 
can be used in decoding the report feature value, resulting in a selective 
decrease in report precision. 

These adjustments are parameterized with a new free parameter in 
the model, the binding index (Fig. 2C). With a binding index of zero, the 
model behaves exactly like the original neural binding model, with the 
proportion of swap errors in one task condition matched to the report 
precision in the other condition (left column in Fig. 2C). A negative 
binding index signifies a selection deficit, in which fewer spikes 
contribute to the decoding of the cue feature values (middle column in 
Fig. 2C). This yields an increased proportion of swap errors (larger peaks 

in the distribution of response deviations from non-targets), while the 
report precision remains the same (the width of response error distri-
butions is unchanged, although long tails appear due to the occurrence 
of swap errors). An index of − 1 indicates maximum selection deficit, for 
which the selection of the cued item is completely random. A positive 
binding index signifies a reporting deficit, in which fewer spikes 
contribute to the decoding of the report feature (right column in 
Fig. 2C). This yields broader response error distributions without 
increasing the frequency of swap errors. A value of 1 indicates maximum 
reporting deficit, for which the response distributions are always 
uniform. 

In addition to this binding index, we derive measures of memory 
precision for color and location from the model fits of each participant. 
We use the circular standard deviation of the decoding error for each 
feature as precision measure, computed from the fitted model but 
excluding any selection or reporting deficits (i.e., computed as if the 
binding index was zero). This means that for participants with a selec-
tion deficit in the model fits, the precision reflects how closely their 
responses are clustered around the items’ true feature values when 
reporting that feature (ignoring swap errors). For participants with a 
reporting deficit, the precision reflects how precise their memory for a 
feature has to be to explain their reliability in selecting the correct item 
based on the given cue. 

Fig. 2. Neural binding model. (A) The features of a sample stimulus (blue lines in plots for color and location) are encoded in the spiking activity of a neural 
population with conjunctive coding. The spike rate of each neuron is shown color coded as a function of the neuron’s preferred values for color and location, and 
white dots indicate spikes occurring in an example trial. Maximum likelihood decoding from the spiking activity yields noisy estimates of the true values (red dashed 
lines). The width of the likelihood distributions (red solid lines) provides an estimate of decoding precision for each feature. (B) The model predicts a response 
probability distribution for each trial, with decoding variability in the report feature leading to imprecision in responses, and decoding variability in the cue feature 
dimension leading to swap errors depending on cue similarity. (C) Model predictions for distributions of response errors are obtained by averaging response 
probability distributions over many trials, aligned to the target or non-target report feature values. Effects of the binding index are shown for a model with other 
parameters held fixed at typical values for this task. Left column, the model with no deficit shows broad response error distribution with almost no swap errors in the 
color report, and a sharper distribution with some swap errors (indicated by the central peak in the distribution of response deviations from non-targets) in the 
location report. A selection deficit (middle column) increases the proportion of swap errors in both feature dimensions, which leads to longer tails in the response 
error distribution without affecting the shape of the central peak. A reporting deficit (right column) produces broader distribution of response errors, but does not 
affect the proportion of swap errors. 
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2.6. Statistical analysis 

Hypothesis testing was conducted using t-tests. Models were 
compared using the Akaike information criterion with correction for 
small sample size (AICc), computed for each participant based on the 
maximum likelihood fit of each model (see S1 for details). 

2.7. Neuroimaging 

Participants underwent a 3-T MRI scan, at the Radboudumc and 
UMCG on the Siemens Magnetom Prisma, at the Amsterdam UMC and 
UMCU on the Philips R5. For the Siemens scanners, sequence details 
were as follows: T2 FLAIR (TI = 1650 ms, TR = 4800 ms, TE = 484 ms, 
[FOV] = 280 mm, voxel size 0.9 × 0.9 × 0.9 mm3). For the Philips 
scanners, sequence details were: T2 FLAIR (TI = 1650 ms, TR = 4800 
ms, TE = 253 ms, [FOV] = 250 mm, voxel size 1.12 × 1.12 × 0.56 mm3). 

Lesions were manually delineated using ITK-SNAP software (Yush-
kevich et al., 2006). The FLAIR and binary lesion mask were normalized 
to an older adult MNI template using the plug-in clinical toolbox for SPM 
(Crinion et al., 2007; Rorden, Bonilha, Fridriksson, Bender, & Karnath, 
2012). 

2.8. Lesion analyses 

For the associations between lesion location and outcome measures 
we used the three performance measures obtained from the extended 
neural binding model fits: binding index, memory precision for color, 
and memory precision for location (circular standard deviation of the 
decoding error). 

Atlas-based LSM (lesion-symptom mapping) was used to investigate 
which lesions are associated with a reporting or selecting deficit, and 
with memory precision. For the binding index the association with 
lesion location was tested two-sided. For memory precision, associations 
were tested one-sided, with higher behavioral scores indicating worse 
performance. Statistical lesion analysis software NiiStat was used (https 
://github.com/neurolabusc/NiiStat). Atlas-based analysis is based on 
the cumulative lesion burden in a specific ROI (region of interest), 
instead of investigating lesions on a voxel-wise basis. The advantage is 
effectively increasing the number of areas that have sufficient coverage 
across participants. The assumption is that lesions in the same ROI affect 
behavior in the same way. In addition, a ROI-based approach reduces 
the strict control needed for multiple testing that is required in voxel- 
wise analyses. Cortical ROIs are based on Brodmann areas (BA). The 
Brodmann atlas has relatively large ROIs compared to other commonly 
used atlases. This has the advantage of making maximum use of cu-
mulative lesion burden to cover a large part of the cerebral cortex. For 
white-matter ROIs the CAT atlas was used as this is the most widely used 
white-matter atlas (Catani & De Schotten, 2008; https://www.natbrainl 
ab.co.uk/). 

Only ROIs with a lesion coverage of at least 4 (6%) subjects were 
included. To correct for multiple comparisons permutation testing was 
set to 5,000 permutations at p < .025 for the binding index (two-sided) 
and at p < .05 for reporting precision (one-sided). Lesion volume, age, 
education, gender, interval between stroke and MRI, and interval be-
tween MRI and assessment were included as covariates and were 
regressed on both behavioral and lesion data (DeMarco & Turkeltaub, 
2018). 

2.9. Data availability 

Anonymized data are available upon request a year after the 
completion of the project (01-07-2021). 

3. Results 

To investigate visual working memory after stroke, we assessed 

stroke patients and age-matched controls in two delayed-reproduction 
tasks. Participants viewed a sample array of colored disks, and after a 
brief delay either had to report the color of one disk cued by its location 
(report-color condition) or the location of one disk cued by its color 
(report-location condition). We fitted a neural population model to the 
behavioral data to detect specific deficits either in memory for feature 
bindings or in the ability to report memorized features. Second, we 
investigated which lesion locations were associated with recall precision 
and with deficits in reporting or selecting features. 

3.1. Behavioral data 

The behavioral data are shown in Fig. 3. Consistent with previous 
studies, the distribution of response errors is broader overall in the 
report-color (Fig. 3A) than in the report-location condition (Fig. 3D). 
Nonetheless, the error distribution for location reports shows long tails, 
with above-zero proportion of responses even at the largest deviations 
from the target location. This is consistent with the presence of swap 
errors, in which participants incorrectly report the location of a sample 
item that is not the cued target. 

The occurrence of such swap errors can be detected by plotting the 
histogram of response deviations from the report feature values of all 
non-target items in each trial (Fig. 3B and E). In the absence of swap 
errors, these distributions should be uniform (after correcting for effects 
of minimum distance between items’ feature values). However, in the 
report-location condition (Fig. 3E) we observed a significant central 
tendency that indicates a clustering of responses around the locations of 
non-target items and thus the occurrence of swap errors (mean absolute 
deviation from non-target features compared to value expected by 
chance if there were no swap errors: patients M (SD) = 1.74 (0.10) vs 
chance 1.78 (0.07), t(82) = 5.82, p < .001, controls 1.77 (0.10) vs 
chance 1.80 (0.07), t(74) = 4.05, p < .001; see S1 for method details). In 
the report-color condition the central peak is absent, and we instead find 
a small, but significant tendency to avoid the colors of non-target items 
(Fig. 3B; mean absolute deviation: patients 1.77 (0.12) vs chance 1.75 
(0.08), t(82) = 3.18, p = .002, controls 1.79 (0.09) vs chance 1.77 
(0.07), t(74) = 2.99, p = .004). 

Despite the overall similarity in response distributions between the 
two participant groups, we find that recall performance is impaired in 
stroke patients (Fig. 3C and F). An independent-sample t-test shows that 
the circular standard deviation as a measure of variability is higher 
(indicating lower precision) in both conditions for patients compared to 
controls (report-color: patients M (SD) = 0.76 (0.35); controls M (SD) =
0.58 (0.28); t(156) = 3.60, p < .001; report-location: patients M (SD) =
0.56 (0.25); controls M (SD) = 0.47 (0.21); t(156) = 2.45, p = .02). 

3.2. Model fits 

We fitted the single-trial data of participants with a neural popula-
tion model that has previously proved successful in capturing perfor-
mance on similar tasks (Schneegans & Bays, 2017). The model assumes 
that the location and color of each item are encoded together in a 
conjunctive population code, such that each spike from this population 
yields a sample of both features of an item. Variability in decoding the 
memorized feature values from noisy spiking activity is used to explain 
both imprecision in reporting a target feature and the occurrence of 
swap errors, which is due to uncertainty in selecting an item based on 
the given cue. 

We found that, for the majority of participants, performance in both 
conditions is well explained by a single conjunctive population code, 
varying only in which feature is used as a cue and which is to be re-
ported. This combined model provided a better quality of fit than 
separate neural binding models fitted to each task condition indepen-
dently, as measured by AICc scores (patients: combined better than 
separate fit for 68 out of 83, mean ΔAICc = 1.71; controls: 67 out of 75, 
mean ΔAICc = 2.82). This supports the hypothesis that a single source of 
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recall variability for each feature can explain both report imprecision 
and swap errors in the two task conditions. 

Because stroke is a heterogeneous syndrome, we wanted to be able to 
quantify specific memory deficits in individual stroke patients. We 
therefore relaxed the neural binding model’s assumption that there is a 
fixed relationship between report precision in one task condition and 
frequency of swap errors in the other condition. We introduce a binding 
index as a new parameter that can capture specific impairments either in 
selecting a cued item or in reporting the feature of an item once it is 
selected, by controlling what proportion of spikes contributes to item 
selection and report feature decoding, respectively. This binding index 
can take values between − 1 (maximum selection deficit) and 1 
(maximum reporting deficit). 

Fig. 4 shows fits of both the original neural binding model (blue) and 
the extended model (red) to the response distributions of selected pa-
tients illustrating different forms of recall deficits. Model fits for par-
ticipants in Fig. 4A and B produce values of the binding index close to 
zero, indicating neither selection nor reporting deficits, and conse-
quently show near identical fits of the two models. Note that these 
participants still differ substantially in their memory precision for both 
color and location, but in both cases the frequency of swap errors is 
consistent with the report precisions. In contrast, the individuals in 
Fig. 4C and D show specific selection deficits, which suggests that 
memory for the binding between cue and report feature is impaired: the 
frequency of swap errors is higher than would be expected based on the 
participant’s reporting precision in each feature. The original binding 
model in these cases fails to fully capture the observed proportion of 
swap errors, since it is constrained by the reporting precision. Finally, 
participants in Fig. 4E and F show evidence for specific reporting defi-
cits. Both of these patients were able to use a color cue to reliably select 
the target item for the location report (indicating that they held the 

colors and their binding to locations in memory), but performed very 
poorly when reporting colors. In these cases, the model without binding 
index is forced to overestimates the frequency of swap errors in the 
report-location condition in order to better capture the very broad error 
distribution in the color report. (In the case of Fig. 4F, the extended 
model still overestimates the proportion of spatial swaps to a lesser 
degree, since it is still constrained by the assumption that reporting 
deficits are symmetrical between the two conditions.) 

Model comparison using AICc scores showed that a non-zero binding 
index was preferred only for a small number of participants (patients: 12 
out of 83, mean ΔAICc = 1.16 in favor of the original model; controls: 7 
out of 75, mean ΔAICc = 1.41 in favor of the original model). This is 
expected if only a few participants show selective impairments of 
binding in visual working memory. 

Fig. 5 shows the distribution of performance measures derived from 
the model fits for patients and controls, namely estimates of memory 
precision for each feature dimension and binding index. Independent 
sample t-tests show that patients have a significantly lower memory 
precision for both color and location compared to controls (color: pa-
tients M (SD) = 0.57 (0.26); controls M (SD) = 0.46 (0.15); t(156) =
3.28, p = .0013; location: patients M (SD) = 0.30 (0.09); controls M 
(SD) = 0.27 (0.08); t(156) = 2.18, p = .031). 

The difference in binding index between patients and controls did 
not reach significance at the group level (patients M (SD) = 0.11 (0.30); 
controls M (SD) = 0.02 (0.27)); t(156) = − 1.80, p = .07). Based on visual 
inspection of the results, we tested post hoc whether group means 
deviate from 0. The estimates of the binding index were significantly 
shifted towards the positive range in patients, indicating an overall 
tendency towards reporting deficits (single sample t-test, t(82) = 3.25, p 
= 0.002). In contrast, estimated binding indices were not significantly 
different from zero in controls (t(74) = 0.79, p = 0.44). Moreover, if we 

Fig. 3. Behavioral data. Data for the report-color condition (A-C) and the report-location condition (D-F). From left to right: histogram of response errors, histogram 
of response deviations from report feature values of non-targets in each trial, and distribution of response precision (as circular standard deviation, higher values 
indicating less precise) in each participant group. Violin plots show the median (white dot), interquartile range (black line), and kernel density plot (Gaussian kernel 
with bandwidth of 0.05). 
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consider only participants in which the introduction of the binding index 
improves quality of fits, a majority showed a reporting deficit (positive 
binding index for 10 out of 12 patients and 4 out of 7 controls), indi-
cating that specific deficits in feature selection are relatively rare. 

We note that despite the overall tendency towards a reporting deficit, 
patients still showed a higher estimated proportion of swap errors when 
reporting location (patients M (SD) = 0.05 (0.05); controls 0.04 (0.04); t 
(156) = 2.76, p = .04), due to the overall lower memory precision. In the 

color report, the difference in swap frequency was not significant (pa-
tients M (SD) = 0.02 (0.04); controls M (SD) = 0.01 (0.02); t(156) =
3.73, p = .09). 

3.3. Lesion analyses 

Of the total sample of 83 patients 65 were included in these analyses. 
Eight were excluded because of a missing structural MRI scan, seven had 
no clear lesion on the MRI scan, three patients had widespread white 
matter hyperintensities. Median lesion volume was 3.06 cm3 (range 
0.02–85.12 cm3). Lesions in the left hemisphere were most common (N 
= 28), followed by lesions in the right hemisphere (N = 21), bilateral 
lesions (N = 13) and brain stem lesions (N = 3). Fig. 6 shows the lesion 
prevalence map. 

3.3.1. Atlas-based lesion-symptom mapping 
Of 82 cortical ROIs included in the Brodmann atlas, 37 (22 right 

hemisphere) were covered by at least 4 lesions. Twenty-seven white- 
matter tracts of 32 defined in the CAT atlas had sufficient lesion 
coverage (see S3 for details). Behavioral variables of interest were 
binding index, and precision of reporting color and reporting location 
indicated by the circular standard deviation. Lesion volume, age, edu-
cation, gender, interval between stroke and MRI, and interval between 
MRI and assessment, were included as covariates. Covariates were cor-
rected for by regressing them on the behavioral and lesion data. 

Lesion status in BA3, the primary somatosensory cortex, in left 
hemisphere was negatively associated with the binding index, indicating 
selection deficits (threshold z < -3.00 and z > 2.66, z = -3.12). Precision 
in the report-color condition was associated with BA6, premotor and 
supplementary motor cortex, in the right hemisphere (threshold z >

Fig. 4. Fits of neural binding model to behavioral data of individual patients. Response histograms of patients are shown as black dots, fits of the original neural 
binding model in blue and fits of the extended model in red. (A, B) Patients without selection or reporting deficit. The binding index is close to 0 so the model fits are 
near-identical. (C, D) Patients with selection deficit. The binding index is negative and the extended model fit indicates more binding errors than the original model 
fit. (E, F) Patients with reporting deficit. The binding index is positive and the extended model fit indicates less binding errors than the original model fit. 

Fig. 5. Model based performance measures. Measures are based on 
maximum likelihood fits of the neural binding model to behavioral data of 
patients and controls. (A) Memory precision in each feature dimension. (B) 
Binding index, with positive values indicating a reporting deficit and negative 
values a selection deficit. Violin plots as in Fig. 3, with bandwidth of 0.05 for 
circular standard deviation and 0.1 for binding index. 
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4.57, z = 4.62), and with BA44, Broca’s area, also in the right hemi-
sphere (threshold z > 4.57, z = 5.24). In the left hemisphere precision in 
reporting color was associated with BA7, superior parietal lobe, in the 
left hemisphere (threshold z > 4.57, z = 5.64) and BA41, auditory cortex 
(threshold z > 4.57, z = 5.69), the posterior segment of the arcuate 
fasciculus (threshold z > 4.33, z = 5.88), and the optic radiation 
(threshold z > 4.33, z = 5.04). For precision in the report-location 
condition there were no significant neural correlates. Results are sum-
marized in Table 1 and Fig. 7. 

4. Discussion 

Mechanisms underlying the binding of visual features have been 
studied in cognitively unimpaired individuals, as well as in ageing and 
patient populations (for a review see Schneegans & Bays, 2019). In the 
current study we investigated feature recall and binding in visual 
working memory in stroke patients to assess if specific deficits in visual 
working memory in this population occur and if so, what the 

neuroanatomical basis is. Specifically, we tested performance in two 
tasks requiring binding of stimulus colors to locations. This is typically 
classified as a form of relational binding, in contrast to conjunctive 
binding which refers to the binding of different visual features within an 
object. The distinction is partly motivated by findings from long-term 
memory research, where distinct forms of binding deficits have been 
associated with different clinical conditions (Moses & Ryan, 2006; 
Mayes, Montaldi, & Migo, 2007). In working memory research, selective 
impairments of conjunctive binding have only been described for pa-
tients suffering from Alzheimer’s disease (Della Sala et al., 2012). In 
contrast, impairments in relational binding have been described for 
different clinical conditions when testing binding of objects to location 
(Olson, Page, Moore, Chatterjee, & Verfaellie, 2006; Pertzov et al., 2013, 
Liang et al., 2016), and in a study testing binding between separately 
presented colors and objects in a single patient with a stroke affecting 
the hippocampus (Parra et al., 2015). 

Based on these earlier results, we expected that stroke damage in 
different cortical regions may result in selective impairment in color- 
location binding. While we found that stroke patients showed an over-
all decrease in memory precision for both color and location, binding 
deficits – operationalized as a specific impairment in selecting the cor-
rect sample item based on the given cue – were rare. Visual deficits were 
associated with a distributed network of brain regions. 

We used a novel approach to assess deficits in feature binding, using 
two symmetrical conditions of a delayed reproduction task in combi-
nation with computational modeling and lesion analysis. We built on 
theoretical work and behavioral results in healthy adults suggesting that 
the same variability in memory retrieval can account for errors in 
reporting a feature and for swap errors when the feature is used as a cue 
(Bays et al., 2009; Oberauer & Lin, 2017; Schneegans & Bays, 2017). 
Previous studies have qualitatively controlled for the effect of memory 
imprecision in the cue feature (e.g., by having participants first select a 
shape that was present in the sample array before reporting its location; 
Pertzov et al., 2015; Pertzov et al., 2013). However, the design used here 
enables quantification of memory precision for a visual feature when it 
has to be reported and when it is used as cue, in order to determine 
whether an additional source of binding errors is needed to explain the 

Fig. 6. Lesion density plot. Maximum overlap 7. MNI coordinates are specified for each axial slice. Left hemisphere is depicted on the left.  

Table 1 
Results from the atlas-based lesion symptom mapping analysis.  

ROI (Fig. 7) Description N 
subjects 

Outcome 
measures 

BA3 left (1) Primary somatosensory cortex/ 
postcentral gyrus 

7 binding 
index 

BA6 right (2) Premotor and supplementary 
motor cortex 

11 precision 
color 

BA7 left (3) Visuo-motor coordination/ 
superior parietal lobe 

4 precision 
color 

BA41 left (4) auditory cortex 5 precision 
color 

BA44 right (5) Broca’s area/inferior frontal 
gyrus 

9 precision 
color 

Posterior 
segment 
arcuate left (6) 

Connecting the inferior parietal 
lobe to Wernicke’s area 

6 precision 
color 

Optic radiation 
left (7) 

Connecting the lateral geniculate 
nucleus to the primary visual 
cortex 

13 precision 
color  
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behavioral results. 
We fitted the behavioral data with an existing neural population 

model which assumes that a single memory representation based on a 
conjunctive population code supports binding and recall. We also 
extended this model by introducing a binding index that can capture and 
quantify specific deviations from the assumption of a single source of 
variability. The implementation of such deficits in the binding model is 
broadly compatible with models assuming mixed representations with 
only a subset of neurons contributing binding information (Bouchacourt 
& Buschman, 2019; Matthey, Bays, & Dayan, 2015). However, given 
that lesion effects vary substantially between participants, we refrained 
here from trying to specify a concrete neural mechanism for observed 
impairments, and confined ourselves to quantifying the memory deficits 
as deviations from the existing model. 

The behavioral results for the control group confirmed the assump-
tion made in previous work that report imprecision and swap errors are 
explained by a single source of variability in healthy individuals. This 
was supported both by model comparison between the original and the 
extended binding model and parameter estimates for the binding index 
in the extended model. In patients, we found an overall decrease in 
memory precision for both color and location, but only limited evidence 
for deviations from the predicted relationship between report precision 
and swap errors. Critically, the deviations that we observed tended to be 
in the direction of a reporting deficit—patients tended to be worse at 
explicitly reporting a memorized feature value (especially for colors) 
than at using it as a cue to retrieve another feature of a matching item. 
This shows that selective impairments in memory for feature binding are 
rare for the patient group analyzed here. 

One could argue that the observed reporting deficits in patients are 
due to the response procedure, in particular in the report-color condition 
where participants had to adjust the color of a central probe stimulus via 
a response dial. This might induce stronger interference than e.g. se-
lection from a color wheel with all response options visible simulta-
neously. Previous studies did not find any performance difference 

between the two response modes in healthy adults (Bae, Olkkonen, 
Allred, Wilson, & Flombaum, 2014), and here we found no consistent 
evidence for reporting failures in controls, but we cannot rule out that 
stroke patients may be particularly susceptible to certain forms of 
interference which may have influenced the results. 

Results from our atlas-based LSM analyses showed distinct neural 
profiles. We identified one lesion location associated with specific 
binding deficits, multiple lesion locations associated with memory pre-
cision for color, and none for location memory precision. In our 
behavioral data the difference between patients and controls is also 
more pronounced in the report-color condition compared to the report- 
location condition. 

Critical lesions for precision in color memory in the left hemisphere 
are the superior parietal lobe, auditory cortex and the posterior segment 
of the arcuate fasciculus and the optic radiation, and in the right 
hemisphere the premotor/supplementary motor cortex and the inferior 
frontal gyrus. This pattern of a behavioral deficit as a consequence of 
damage to one of several brain structures is known as the equivalence 
brain mode and has been described in relation to memory deficits before 
(Godefroy et al., 1998; Toba et al., 2020). Its central principle is that 
behavior emerges from nodes in an organized network and that only if 
all nodes are intact, a 100% performance is obtained. Both the right 
inferior frontal gyrus and supplementary motor area have previously 
been associated with visuospatial working memory (Baddeley, 2003; 
Teramoto, Inaoka, & Ono, 2016; Xiang, Dediu, Roberts, Oort, & v., 
Norris, D. G., & Hagoort, P. , 2012), and with categorization (Adams & 
Janata, 2002; Lee et al., 2020; Li, Seger, Chen, Mo, & (March, , 2020), 
for colors in particular (Liu, Lu, & Seger, 2019). 

In all patients with a lesion in the auditory cortex in the left hemi-
sphere, the lesion extended to the posterior segment of the arcuate 
fasciculus. As our task does not have an auditory component we focus on 
the posterior segment of the arcuate fasciculus. The posterior segment of 
the arcuate fasciculus in the left hemisphere is primarily associated with 
the language network, specifically lexical retrieval and feedback 

Fig. 7. Results of the atlas-based LSM analysis. Shaded areas show which regions are included in the analysis (≥4 overlapping lesions). ROIs significantly 
associated with the binding index are plotted in yellow; ROIs significantly associated with precision in reporting color in red. No areas were significantly associated 
with precision in reporting location. The numbers correspond to Table 1. Coordinates correspond to MNI standardized space. Left hemisphere is depicted on the left. 
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between visual and non-visual information (Nakajima, Kinoshita, Shi-
nohara, & Nakada, 2019). Souza and Skóra (2017) showed that labelling 
of colors compared to articulatory suppression increased the quality of 
retention in visual working memory. A dual-content model has been 
proposed that distinguishes between a high-resolution channel that 
encodes color hues on a continuous scale, and a low-resolution channel 
that encodes the category of a stimulus (Bae, Olkkonen, Allred, & 
Flombaum, 2015). Stroke patients with a lesion including the posterior 
segment of the arcuate fasciculus might be impaired on verbalizing color 
hues and as a consequence be less accurate in reporting color. Bae and 
colleagues (2015) suggested that categorization in visual working 
memory can take place at verbal and visual level. This view is in 
accordance with our LSM results that associated language related areas 
in the left hemisphere and medial and inferior frontal areas in the right 
hemisphere with precision of reporting color. Our study indicates that 
working memory for color depends on a large anatomical network. Such 
a spatially distributed network is prone to damage in any brain region, 
which accounts for patients with different lesion locations having defi-
cits in reporting color. However, our stroke patients demonstrated 
mostly subtle impairments in visual working memory. Representations 
from different areas in the brain might in part compensate for impaired 
encoding in lesioned areas. 

Previous studies associated the posterior parietal cortex with the 
binding of features in a change detection task for shape-color bindings 
(Birba et al., 2017; Parra, Della Sala, Logie, & Morcom, 2014) and with 
perceptual attention as measured by detection of changes in color 
(Weber, Hahn, Hilger, & Fiebach, 2017). Results from our atlas-based 
LSM study identified the superior parietal lobe only for precision in 
the report-color condition. Binding deficits were rare in our study 
sample, which might explain why we did not detect an association for 
binding with this area. 

An unexpected result was that a critical lesion location for specific 
binding deficits was found in the left primary somatosensory cortex 
(BA3). To our knowledge, to date only one study showed that visual 
working memory can be decoded from activity in somatosensory areas 
(Christophel & Haynes, 2014). This study made use of a similarity 
detection task for complex and colored motion stimuli. It has been 
suggested that representations in somatosensory areas are specific for 
complex dynamic stimuli (Christophel & Haynes, 2014). An alternative 
explanation is that the somatosensory cortex is anatomically located in 
the center of the fronto-parietal functional connectivity network for 
visual working memory (Siegel et al., 2016). Future studies should 
investigate the role of somatosensory areas in visual working memory. 

Some of the areas we identified with a significant lesion-behavior 
association are typically related to motor skills or visual-motor coordi-
nation. However, for two reasons it seems unlikely that motor-related 
deficits, which might be a consequence of stroke, underly these associ-
ations. First, all regions were associated with only one specific outcome 
measure. The effect of visual-motor coordination would be expected to 
be comparable for the precision in reporting color and reporting loca-
tion. We only found an association between precision in reporting color 
and a lesion in the premotor and supplementary motor cortex in the 
right hemisphere and the superior parietal lobe in the left hemisphere. 
Secondly, we found the pre-motor and supplementary motor area in the 
right hemisphere associated with precision in reporting color. Most 
participants were right-handed; therefore, an effect of visual-motor co-
ordination would be expected contralaterally. The binding index is 
associated with the primary somatosensory cortex/postcentral gyrus in 
the left hemisphere, but this outcome measure is corrected for precision 
in reporting both color and location. 

Our LSM analysis showed an association between precision in 
reporting color and the left optic radiation (Párraga, Ribas, Welling, 
Alves, & de Oliveira, 2012). While damage to the optic radiation has 
been associated with visual field deficits (Yogarajah et al., 2009), as far 
as we are aware there are no studies that associate the optic radiation 
with color perception or memory. All visual areas, V1-5 bilaterally, were 

included in our analyses but were not associated with precision in 
feature reporting. As most patients have unilateral lesions, the visual 
cortex of the intact hemisphere might compensate for possible visual 
deficits. 

Our analysis of associations between lesion location and memory 
deficits is by definition limited by the lesion coverage in the tested pa-
tient population. Due to the vascularization of the brain, certain areas 
are unlikely to suffer a stroke (Sperber & Karnath, 2017), including some 
regions that have been associated with working memory. The medial 
temporal lobe has been implicated to play a role for selective binding 
deficits in Alzheimer’s patients (Della Sala et al., 2012; Liang et al., 
2016), with conflicting findings in other populations (see Schneegans & 
Bays, 2019 for a review), but this area is not typically affected by stroke 
(Snaphaan, Rijpkema, Uden, & v., Fernandez, G., & De Leeuw, F. E. , 
2009). The dorsolateral prefrontal cortex (BA9/46) and inferior parietal 
lobe (BA39/40) have been reported as essential for visual working 
memory (Baddeley, 2003), but only areas 40 and 46 in the right hemi-
sphere had sufficient lesion coverage to be included in the present study. 
A possible explanation for the small performance differences in preci-
sion in the report location condition might be the lack of lesions in key 
regions of the parietal lobe (e.g. Prabhakaran, Narayanan, Zhao, & 
Gabrieli, 2000). Based on these earlier studies and our results on visual 
working memory for color, we argue that memory for other features and 
bindings also relies on a spatially distributed network rather than on a 
single brain region. Representations in different regions might vary in 
level of abstraction, from sensory representations in primary sensory 
areas to abstract representations in frontal areas (Christophel, Klink, 
Spitzer, Roelfsema, & Haynes, 2017). Integrated representations have 
previously been associated with prefrontal regions, while unintegrated 
representations showed greater activation in posterior regions (Prab-
hakaran et al., 2000). A promising direction for future research is using 
the regions identified in the present study to identify networks under-
lying visual memory based on resting-state MRI in healthy subjects 
(Sperber & Dadashi, 2020). 

To conclude, we have presented a model that explains behavioral 
errors in feature reporting and binding in both neurotypical controls and 
stroke patients. In the control group, report imprecision and swap errors 
in the delayed reproduction task can be explained by a single source of 
variability. Patients showed an overall decrease in memory precision for 
both color and location, but we found only limited evidence for de-
viations from the predicted relationship between report precision and 
swap errors. Binding deficits, precision in reporting color, and precision 
in reporting location are associated with different lesion profiles. The 
results from our study converge with previous reports, based on neu-
roimaging and other techniques, that working memory representations 
are widely distributed in the brain and can be found across parietal, 
temporal, and prefrontal cortices. 
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1 Data analysis

We denote the report feature values of the N sample items in trial i as

{θ(i)1 , . . . , θ
(i)
N }, with θ

(i)
1 being the target feature value, and we denote the

response feature value as θ
(i)
r . The response errors are then determined as

ε(i) = D◦(θ
(i)
r , θ

(i)
1 ), (1)

and the non-target deviations as

ε̃
(i)
j = D◦(θ

(i)
r , θ

(i)
j ) for j = 2, . . . , N, (2)

where D◦ is the signed distance on the circle.
The occurrence of swap errors can be visualized by plotting the histogram

of non-target deviations, with a central peak indicating that responses are

1



clustered around the report feature values of non-target items. However, if
there is a minimum distance between the feature values of all sample items
within a trial (as is the case in the present experiment), the distribution of
non-target deviations cannot be assumed to be uniform in the absence of
swap errors. If the response values are concentrated around the target value,
they will tend to be at least that minimum distance away from the report
values of the non-target items, resulting in a central dip in the distribution of
non-target deviations which may mask any central peak produced by swap
errors.

We therefore correct the histogram of non-target deviations by subtract-
ing the expected histogram in the absence of any swap errors (Schneegans
and Bays, 2017), computed separately for each participant and each task
condition. We determine the deviation of all non-target features from the
target feature in each trial,

δ
(i)
j = D◦(θ

(i)
j , θ

(i)
1 ) for j = 2, . . . , N, (3)

and then compute the histogram over all differences

ζ
(i,i′)
j = D◦(ε

(i), δ
(i′)
j ) for j = 2, . . . , N and i, i′ = 1, . . . , T, (4)

where T is the number of trials in each condition. This yields the expected
histogram of non-target deviations by shuffling the deviations of responses
from targets and the relative position of non-targets to targets across trials.

To test for the presence of swap errors, we determined for each partici-

pant the arithmetic mean of the absolute non-target deviations, |ε̃(i)j |, across
all non-targets and trials, and the mean of all shuffled absolute non-target

deviations, |ζ(i,i
′)

j |, and compared these using a paired-samples t-test.

2 Neural binding model

2.1 Conjunctive population code

We assume that the colors and locations of the sample stimuli are encoded
in an idealized conjunctive population code, in which each neuron’s activity
is determined by its tuning functions for stimulus color and location. Recall
is modeled as decoding of memorized features from noisy neural activity.
We will describe this neural population model in terms of cue and report
feature values. Either role can be taken by color or location, depending on
task condition.

2



The firing rate of neuron k encoding cue feature ψj and report feature
θj of item j in the sample display is given as

r̄k,j(ψj , θj) =
γ

NM
φ◦
(
ψj ;ψ

′
k, κψ

)
φ◦
(
θj ; θ

′
k, κθ

)
(5)

Here, γ is the mean total firing rate of the population, which is divided
by the number of sample items, N , and the number of neurons, M , that
contribute to the encoding of each item. The feature tuning of the neuron
is described by von Mises functions with preferred values ψ′k and θ′k for cue
and report feature, respectively, and associated concentration parameters κψ
and κθ. We assume that the shape of the tuning curves is fixed throughout
the population, and individual neurons only differ in their preferred feature
values, which uniformly sample the underlying feature space of color-location
combinations.

Discrete spikes are produced based on each neuron’s firing rate via inde-
pendent Poisson processes,

rk,j ∼ Pois(r̄k,j) (6)

Due to the superposition property of the Poisson distribution, the total
number of spikes, nj , that contribute to representing the features of each
item j is then likewise a Poisson random variable,

nj ∼ Pois
( γ
N

)
. (7)

2.2 Response probabilities

Feature recall is modeled as maximum likelihood estimation of the encoded
feature values from the noisy spiking activity over a fixed time window. To
determine the distribution of decoding errors, we deviate from the method
used by Schneegans and Bays (2017), and instead build on new results from
Schneegans et al. (2019) to derive a more elegant solution. In this publication
it has been shown that for a given number of spikes contributing to the
encoding of item j, the distribution of decoded values θ̂j can be closely
approximated by a von Mises distribution around the true feature value θj
in each feature dimension, with precision scaled by the number of spikes nj :

pdec

(
θ̂j

∣∣∣ θj , nj) = φ◦

(
θ̂j ; θj , κ(njωθ)

)
(8)

Here, ωθ is the precision (as Fisher information) corresponding to the tuning

curve concentration κθ, which is determined as ω = κ I1(κ)I0(κ)
, and the term

3



κ(njωθ) describes the concentration parameter yielding a multiple of the
base precision ωθ, which can be obtained by numerical inversion of the same
relationship.

The joint distribution of decoded cue and report feature values can then
be described as

pdec

(
θ̂j , ψ̂j

∣∣∣ θj , ψj)
=

∞∑
nj=0

PrPois

(
nj ,

γ

N

)
pdec

(
θ̂j

∣∣∣ θj , nj) pdec (ψ̂j ∣∣∣ ψj , nj) (9)

It should be noted that decoding errors in the two feature dimensions are
not independent of each other, since both depend on the number of spikes
in the neural population that contribute to decoding the item’s features.

We assume that the cue and response features of all items are decoded
from the neural activity when a cue is given. The item whose decoded cue
feature value is closest to the actual cue is selected for response generation,
and its decoded report feature value is produced as response. The probabil-
ity that a certain report feature value θr is chosen as a response in a trial
with item report and cue feature values θ and ψ, respectively, is then

presp (θr | θ,ψ) =
N∑
j=1

p
(
θ̂j = θr ∧ item j selected

∣∣∣ θ,ψ) . (10)

The probability that an item is selected for response generation is deter-
mined by its decoded cue feature, and due to the aforementioned dependence
between decoding errors it is not independent from the obtained report fea-
ture value. But we can separate these probabilities by conditioning on the
number of available spikes, nj :

presp (θr | θ,ψ)

=

N∑
j=1

∞∑
nj=0

PrPois

(
nj ,

γ

N

)
pdec (θr | θj , nj) Prsel (j | ψ, nj) (11)

The conditional probability of decoding a certain report feature value given
the spike count and true feature value in this equation can be determined
as in Eq. 8.

The probability that an item is selected (i.e., its decoded cue feature
value is closest to the actual cue) can be computed by numerical integration
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as

Prsel (j | ψ, nj)

=

∫ π

0
p
(
D◦(ψ̂j − ψc) = s

∣∣∣ ψj , nj) ∏
j′ 6=j

p
(
D◦(ψ̂j′ − ψc) > s

∣∣∣ ψj′) ds,
(12)

where ψc is the feature value of the actually given cue. The first probability
term in this integral can be evaluated based on Eq. 8, while the second term
requires marginalizing over the possible sample counts,

pdec

(
ψ̂j′
∣∣∣ ψj′) =

∞∑
nj′=0

PrPois

(
nj′ ,

γ

N

)
pdec

(
ψ̂j′
∣∣∣ ψj′ , nj′) . (13)

2.3 Binding and reporting deficits

In order to detect specific impairments in feature binding performance, we
extend the model in a way which relaxes the assumption that memory preci-
sion for a feature when used as a cue from is the same as memory precision
for the same feature when it is reported. More specifically, we allow the
number of spikes that contribute to the selection of the cued item to be dif-
ferent from the number of spikes that contribute to decoding of the report
features. This is compatible with the idea that the pool of neurons underly-
ing memory for individual features may be separate from the one underlying
binding memory, without making any strong assumptions about the specific
neural architecture.

We introduce a new parameter aselect that specifies the mean proportion
of total spikes nj that are available for selecting an item for response based
on the cue. We assume that this adjusted number of spikes ñj is drawn
from a binomial distribution with success rate aselect, such that the selection
probability used in Eq. 11 is now given as

Prsel (j | ψ, nj , aselect) =

nj∑
ñj=0

PrBinom(ñj ;nj , aselect) Prsel (j | ψ, ñj) , (14)

where Prsel (j | ψ, ñj) is again determined as in Eq. 12.
We also allow for the converse effect, i.e. an impairment of reporting the

feature value after an item has been selected. For this case, we assume that
the number of spikes for decoding the report feature is a subset of the total
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spikes, likewise drawn from a binomial distribution with success rate areport.
The decoding probability of the report in Eq. 11 is then computed as

pdec (θ | θj , nj , areport) =

nj∑
ñj=0

PrBinom(ñj ;nj , areport)pdec (θ | θj , ñj) , (15)

with pdec (θ | θj , ñj) determined as in Eq. 8.
We combine the model variants with binding deficit and reporting deficit

into a single model with a binding index b as free parameter, in such a way
that b = 0 reflects no binding or reporting deficit (all spikes are available
both for selecting the report item and decoding its report feature value),
b = −1 indicates complete loss of binding memory (no spikes available for
selecting the report item, so each sample item is selected with equal prob-
ability) and b = 1 indicates complete loss of feature reporting ability (no
spikes available for decoding the report feature value, so all responses are
drawn from a uniform distribution):

aselect = 1 + b, areport = 1 if b ≤ 0
aselect = 1, areport = 1− b otherwise

(16)

2.4 Priors for model parameters

Due to the very limited amount of behavioral data collected for each partic-
ipant, some aspects of the model fits can be underconstrained in the current
study. The first of these concerns a trade-off between the mean total spike
rate γ and the tuning curve concentrations κθ and κψ. An increase in recall
precision can be achieved in the model either by increasing the spike rate or
the concentration parameters. In most VWM studies, recall performance is
measured at different set sizes. The neural population model assumes that
the total spike rate is distributed among all sample items, while the tuning
curves remain fixed across set sizes. This mechanism has been shown to
successfully account for set size effects (Bays, 2014), and provides sufficient
constraints to obtain robust estimates for each parameter.

In the present study with a single set size and small number of trials,
we employ a weakly informative prior on the parameter γ. The prior is
based on population model fits to a database of delayed reproduction tasks
with color report (Schneegans et al., 2019), but with increased variability
to avoid overly constraining the model fits. It is implemented as a Gamma
distribution,

p(γ) =
1

Γ(k)θk
γk−1e

γ
θ , (17)
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with shape parameter k = 2 and scale parameter θ = 8. This prior penalizes
extremely small values of γ as well as very large values. In particular it
prevents γ from going towards infinity in the model fits (while the κ values
go towards zero), which otherwise happens for a few participants, without
substantially altering the resulting error distributions.

Another issue that arises in fitting the model to the data is that some par-
ticipants do not show any identifiable swap errors, due to the small number
of trials and the relatively low difficulty of the task. In these participants,
increasing the precision for the cue feature towards infinity improves the
quality of fit in each condition. To avoid unrealistically high estimates of
cue feature precision, we add a weakly informative prior on the probability
of swap errors. This prior is implemented by computing for a given set of
model parameters the probability that a swap error occurs if both non-target
items have the minimum allowed distance (30◦) to the target in the cue di-
mension, using Eq. 12. Then a Beta-distribution distribution is applied to
this probablity pNT,

p(pNT) =
pα−1NT (1− pNT)β−1

B(α, β)
(18)

with α = β = 2. This prior is directly equivalent to adding two trials
with minimum distance between cue features to each participant’s data in
each condition, one of which results in a swap error and the other in a target
response (while ignoring the actually reported feature), and it penalizes both
very small and very high (close to one) swap probabilities.

2.5 Model fitting and comparison

We determined maximum likelihood fits of each model to the behavioral data
of each participant. For the neural binding model, we obtained both separate
fits for each task condition (six parameters in total), and a combined fit with
shared parameters across both condition (parameters γ, κcolor and κlocation,
with the latter assigned either to the cue or the report dimension according
to task condition). The model with additional binding index, b, was fit to
the combined data only (four parameters in total). Maximum likelihood fits
were determined via the Nelder-Mead simplex method (function fminsearch

in Matlab), using a grid of possible initial values for all parameters. Initial
values were [6, 12, 24] for γ, [2, 5, 12] for κ in each feature dimension, and
[−0.3, 0, 0.3] for b.

We compare models’ quality of fit using the Akaike information criterion
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with correction for small sample size (AICc),

AICc = 2k − 2 lnL+
2k2 + 2k

n− k − 1
, (19)

where k is the total number of free parameters in each model, L is the
likelihood of the fitted model, and n is the total number of trials for each
participant.

The pattern of results would not qualitatively change if we used the
Bayesian information criterion instead of the AICc for model comparisons,
although the combined fit of both task conditions with the original neural
binding model (which has the lowest number of free parameters) would have
an even larger advantage over the alternative models.

2.6 Model-based performance measures

We use the circular standard deviation of the decoding errors in the absence
of binding or reporting deficits as a measure of memory performance. To
this end, we compute the probability distribution pdec(θ̂ | θ) as in Eq. 13, and
numerically determine its circular standard deviation. This measure incor-
porates the concentration parameters of the tuning curves in each feature
dimension, κlocation and κcolor, as well as the shared spike rate parameter γ.
Due to the possible trade-off between these parameters described above, we
do not analyze and compare these individual parameters directly. Addition-
ally, we use the binding index estimated for each participant as measure of
specific binding or reporting deficits.

We can also estimate the proportion of swap errors that occur for each
participant from the model fits. For a single trial, the posterior probability
that the given response θr was the result of selecting item j for response
generation can be derived from Eq. 11 as

Pr (j | θr,θ,ψ) =

∑∞
nj=0 PrPois

(
nj ,

γ
N

)
pdec (θr | θj , nj) Prsel (j | ψ, nj)

presp (θr | θ,ψ)
.

(20)
To estimate the overall proportion of swap errors, we sum the probability
values obtained from this equation for the two non-target items in each trial,
and average the sum over all trials.
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3 Lesion coverage

Table S1. Number of participants per region of interest. Shaded
areas were included in the atlas-based LSM analysis. Only the areas in
a dark shade of grey were significantly associated with one of the outcome
measures. The number of subjects indicates how many subjects had a lesion
in each area.

Brodmann areas N subjects

1 L primary somatosensory cortex 3
1 R primary somatosensory cortex 2
2 L primary somatosensory cortex 3
2 R primary somatosensory cortex 4
3 L primary somatosensory cortex 7
3 R primary somatosensory cortex 5
4 L primary motor cortex 8
4 R primary motor cortex 5
5 L somatosensory association cortex 2
5 R somatosensory association cortex 3
6 L premotor cortex and supplementary motor cortex 15
6 R premotor cortex and supplementary motor cortex 11
7 L superior parietal lobe 4
7 R superior parietal lobe 5
8 L frontal eyefield 2
8 R frontal eyefield 3
9 L dorsolateral prefrontal cortex 2
9 R dorsolateral prefrontal cortex 3
10 L anterior prefrontal cortex 1
10 R anterior prefrontal cortex 1
11 L orbitofrontal 2
11 R orbitofrontal 3
17 L V1 6
17 R V1 8
18 L V2 7
18 R V2 10
19 L V3,4,5 10
19 R V3,4,5 12
20 L inferior temporal gyrus 3
20 R inferior temporal gyrus 4
21 L middle temporal gyrus 4
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21 R middle temporal gyrus 4
22 L superior temporal gyrus 3
22 R superior temporal gyrus 5
23 L cingulate cortex 2
23 R cingulate cortex 2
24 L cingulate cortex 1
24 R cingulate cortex 1
25 L subgenual area 0
25 R subgenual area 2
26 L retrosplenial region 0
26 R retrosplenial region 0
27 L piriform cortex 0
27 R piriform cortex 2
28 L cingulate cortex 0
28 R cingulate cortex 1
29 L cingulate cortex 0
29 R cingulate cortex 0
30 L cingulate cortex 1
30 R cingulate cortex 4
32 L cingulate cortex 0
32 R cingulate cortex 2
34 L dorsal enthorihinal cortex 2
34 R dorsal enthorihinal cortex 2
35 L perirhinal cortex 1
35 R perirhinal cortex 2
36 L perirhinal cortex 0
36 R perirhinal cortex 1
37 L fusiform gyrus 6
37 R fusiform gyrus 9
38 L temporal pole 3
38 R temporal pole 4
39 L angular gyrus 3
39 R angular gyrus 3
40 L supramarginal gyrus 3
40 R supramarginal gyrus 5
41 L primary auditory cortex / heschl gyrus 5
41 R primary auditory cortex / heschl gyrus 3
42 L primary auditory cortex / heschl gyrus 2
42 R primary auditory cortex / heschl gyrus 4
43 L primary gustatory cortex 6
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43 R primary gustatory cortex 4
44 L broca 10
44 R broca 9
45 L broca 4
45 R broca 5
46 L dorsolateral prefrontal cortex 3
46 R dorsolateral prefrontal cortex 5
47 L inferior frontal gyrus 4
47 R inferior frontal gyrus 6
48 L retrosubicular area 25
48 R retrosubicular area 18

CAT atlas N subjects

1 anterior commissure left 2
2 arcuate anterior segment left 11
3 long segment left 13
4 arcuate posterior segment left 6
5 cingulum left 9
6 corpus callosum left 19
7 cortico-ponto cerebellum left 20
8 cortico-spinal left 27
9 fornix left 3
10 inferior cerebellar pedunculus left 4
11 inferior longitudinal fasciculus left 11
12 inferior occipito-frontal fasciculus left 11
13 internal capsule left 25
14 optic radiations left 13
15 superior cerebelar pedunculus left 2
16 uncinate left 7
17 anterior commissure right 5
18 arcuate anterior segment right 9
19 long segment right 6
20 arcuate posterior segment right 5
21 cingulum right 9
22 corpus callosum right 21
23 cortico-ponto cerebellum right 13
24 cortico-spinal right 18
25 fornix right 5
26 inferior cerebellar pedunculus right 2
27 inferior longitudinal fasciculus right 11
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28 inferior occipito-frontal fasciculus right 18
29 internal capsule right 21
30 optic radiations right 7
31 superior cerebelar pedunculus right 2
32 uncinate right 9
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